首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Methods for the detection of viable rotaviruses and rotavirus antigen in water were developed and compared. The methods included laboratory-developed enzyme-linked immunosorbent assays (ELISAs) with chromogenic and luminescent substrates, commercial Rotazyme and Enzygnost ELISAs, and an indirect immunofluorescent assay. Of the methods tested, the immunofluorescent assay and the Enzygnost ELISA were the most sensitive for the simian rotavirus SA-11. All of the methods were positive for human rotavirus from clinical specimens. Seeded SA-11 rotavirus was concentrated from water by absorption to and elution from Zeta Plus filters followed by organic flocculation. Interference with the assays by components of the wastewater concentrates was minimal for the ELISAs, although the undiluted organic flocs were cytotoxic for the immunofluorescent assay. A survey of Jerusalem wastewater was carried out over the course of 1 year, and samples were assayed for rotaviruses and enteroviruses. Although enteroviruses were found in almost all of the samples, all samples were negative for rotaviruses. The concentration of rotaviruses in the wastewater was thus below the detection limit of the method used.  相似文献   

2.
Adsorption of poliovirus and rotavirus by aluminum hydroxide and activated sludge flocs was studied. Both aluminum hydroxide and activated sludge flocs adsorbed greater amounts of poliovirus than rotavirus. Aluminum hydroxide flocs reduced the titer of poliovirus in tap water by 3 log10, but they only reduced the titer of a simian rotovirus (SA-11) in tap water by 1 log10 or less and did not noticeably reduce the number of human rotavirus particles present in a dilute stool suspension. Activated sludge flocs reduced the titer of added poliovirus by 0.7 to 1.8 log10 and reduced the titer of SA-11 by 0.5 log10 or less. These studies indicate that a basic difference in the adsorptive behavior of enteroviruses and rotaviruses exists and that water and wastewater treatment processes that are highly effective in removal of enteroviruses may not be as effective in removing other viral groups such as rotaviruses.  相似文献   

3.
Adsorption of poliovirus and rotavirus by aluminum hydroxide and activated sludge flocs was studied. Both aluminum hydroxide and activated sludge flocs adsorbed greater amounts of poliovirus than rotavirus. Aluminum hydroxide flocs reduced the titer of poliovirus in tap water by 3 log10, but they only reduced the titer of a simian rotovirus (SA-11) in tap water by 1 log10 or less and did not noticeably reduce the number of human rotavirus particles present in a dilute stool suspension. Activated sludge flocs reduced the titer of added poliovirus by 0.7 to 1.8 log10 and reduced the titer of SA-11 by 0.5 log10 or less. These studies indicate that a basic difference in the adsorptive behavior of enteroviruses and rotaviruses exists and that water and wastewater treatment processes that are highly effective in removal of enteroviruses may not be as effective in removing other viral groups such as rotaviruses.  相似文献   

4.
5.
Polioviruses and rotaviruses are potential indicators of sewage pollution of water and shellfish. Several methods for detecting these viruses in oysters were assessed. Elution-precipitation involving Catfloc for clarification and skim milk for subsequent flocculation resulted in the recovery of an average of 79% of poliovirus type 1 and 37% of rotavirus SA-11 from oyster homogenates inoculated with low numbers of these viruses. Adsorption-elution-precipitation did not improve the recovery of poliovirus and was detrimental to the recovery of rotavirus. Ultrafiltration or ultracentrifugation resulted in improved recovery of rotavirus but also in higher toxicity of oyster extracts to cell cultures. We recommend the use of the described elution-precipitation method for detecting viral pollutants in sample of oysters.  相似文献   

6.
Polioviruses and rotaviruses are potential indicators of sewage pollution of water and shellfish. Several methods for detecting these viruses in oysters were assessed. Elution-precipitation involving Catfloc for clarification and skim milk for subsequent flocculation resulted in the recovery of an average of 79% of poliovirus type 1 and 37% of rotavirus SA-11 from oyster homogenates inoculated with low numbers of these viruses. Adsorption-elution-precipitation did not improve the recovery of poliovirus and was detrimental to the recovery of rotavirus. Ultrafiltration or ultracentrifugation resulted in improved recovery of rotavirus but also in higher toxicity of oyster extracts to cell cultures. We recommend the use of the described elution-precipitation method for detecting viral pollutants in sample of oysters.  相似文献   

7.
8.
9.
Previously, we demonstrated that children in day care centers commonly experience diarrhea due to rotavirus, giardia, and bacterial pathogens. Multiple agents frequently coexist, and the environment is heavily contaminated with enteric bacteria during outbreaks. A study of environmental surface contamination with rotavirus was performed during three non-outbreak periods. Of 25 samples collected from environmental surfaces and teachers hands at a day care center, 4 (16%) were positive for rotavirus antigen when a fluorescence assay was used. We also examined the survival of two animal viruses, rotavirus SA-11 and poliovirus type 1, and bacteriophage 12 on similar environmental surfaces in a laboratory. Poliovirus type 1 and bacteriophage f2 were more resistant to drying than rotavirus SA-11 and could be recovered after a 90-min exposure on a dry surface. Rotavirus SA-11 could be detected for 30 min. All three viruses survived longer when they were suspended in fecal material than when they were suspended in distilled water. These data suggest that several agents, including rotavirus, can remain viable on contaminated surfaces long enough to be transmitted to susceptible children. This finding helps explain why rotavirus shows a mode of spread like that of parasitic and bacterial agents within day care center settings.  相似文献   

10.
Previously, we demonstrated that children in day care centers commonly experience diarrhea due to rotavirus, giardia, and bacterial pathogens. Multiple agents frequently coexist, and the environment is heavily contaminated with enteric bacteria during outbreaks. A study of environmental surface contamination with rotavirus was performed during three non-outbreak periods. Of 25 samples collected from environmental surfaces and teachers hands at a day care center, 4 (16%) were positive for rotavirus antigen when a fluorescence assay was used. We also examined the survival of two animal viruses, rotavirus SA-11 and poliovirus type 1, and bacteriophage 12 on similar environmental surfaces in a laboratory. Poliovirus type 1 and bacteriophage f2 were more resistant to drying than rotavirus SA-11 and could be recovered after a 90-min exposure on a dry surface. Rotavirus SA-11 could be detected for 30 min. All three viruses survived longer when they were suspended in fecal material than when they were suspended in distilled water. These data suggest that several agents, including rotavirus, can remain viable on contaminated surfaces long enough to be transmitted to susceptible children. This finding helps explain why rotavirus shows a mode of spread like that of parasitic and bacterial agents within day care center settings.  相似文献   

11.
The simian rotavirus SA11 was used to develop a simple, reliable, and efficient method to concentrate rotavirus from tap water, treated sewage, and raw sewage by absorption to and elution from Filterite fiberglass-epoxy filters. SA11 adsorbed optimally to Filterite filters from water containing 0.5 mM AlCl3 at pH 3.5. Filter-bound virus was eluted with 0.05 M glycine-NaOH supplemented with 10% tryptose phosphate broth at pH 10. SA11 was quantitated by plaque assay, whereas human rotavirus was detected by immunofluorescence. The method was applied to detect rotavirus in raw and treated sewage at two Houston, Tex., sewage treatment plants. The sewage isolates were identified as rotavirus, probably a human strain, based on several criteria. The sewage isolates were detectable by an immunofluorescence test, using anti-SA11 serum which would detect the simian, human bovine, and porcine rotaviruses. No reaction was noted by immunofluorescence with the reoviruses or several common enteroviruses. The sewage isolates were neutralized by convalescent sera from a human adult and infant who had been infected by rotavirus as well as by a hyperimmune serum prepared in guinea pigs against purified human rotavirus. Preimmune or preillness sera did not react with the isolates by neutralization or immunofluorescence. The natural isolates were sensitive to pH 11 and other inactivating agents, similar to SA11. The buoyant density of the sewage isolates in CsCl gradients was 1.36 g/cm3, which is the value usually reported for complete, infectious rotavirus particles. The double-shelled particle diameter was 67.1 +/- 2.4 nm. Finally, electron micrographs of cell lysates inoculated with the sewage isolate showed particles displaying characteristic rotavirus morphology.  相似文献   

12.
The simian rotavirus SA11 was used to develop a simple, reliable, and efficient method to concentrate rotavirus from tap water, treated sewage, and raw sewage by absorption to and elution from Filterite fiberglass-epoxy filters. SA11 adsorbed optimally to Filterite filters from water containing 0.5 mM AlCl3 at pH 3.5. Filter-bound virus was eluted with 0.05 M glycine-NaOH supplemented with 10% tryptose phosphate broth at pH 10. SA11 was quantitated by plaque assay, whereas human rotavirus was detected by immunofluorescence. The method was applied to detect rotavirus in raw and treated sewage at two Houston, Tex., sewage treatment plants. The sewage isolates were identified as rotavirus, probably a human strain, based on several criteria. The sewage isolates were detectable by an immunofluorescence test, using anti-SA11 serum which would detect the simian, human bovine, and porcine rotaviruses. No reaction was noted by immunofluorescence with the reoviruses or several common enteroviruses. The sewage isolates were neutralized by convalescent sera from a human adult and infant who had been infected by rotavirus as well as by a hyperimmune serum prepared in guinea pigs against purified human rotavirus. Preimmune or preillness sera did not react with the isolates by neutralization or immunofluorescence. The natural isolates were sensitive to pH 11 and other inactivating agents, similar to SA11. The buoyant density of the sewage isolates in CsCl gradients was 1.36 g/cm3, which is the value usually reported for complete, infectious rotavirus particles. The double-shelled particle diameter was 67.1 +/- 2.4 nm. Finally, electron micrographs of cell lysates inoculated with the sewage isolate showed particles displaying characteristic rotavirus morphology.  相似文献   

13.
To identify the rotavirus protein which mediates attachment to cells in culture, viral reassortants between the simian rotavirus strain RRV and the murine strains EHP and EW or between the simian strain SA-11 and the human strain DS-1 were isolated. These parental strains differ in the requirement for sialic acid to bind and infect cells in culture. Infectivity and binding assays with the parental and reassortant rotaviruses indicate that gene 4 encodes the rotavirus protein which mediates attachment to cells in culture for both sialic acid-dependent and -independent strains. Using ligated intestinal segments of newborn mice and reassortants obtained between the murine strain EW and RRV, we developed an in vivo infectivity assay. In this system, the infectivity of EW was not affected by prior treatment of the enterocytes with neuraminidase, while neuraminidase treatment reduced the infectivity of a reassortant carrying gene 4 from RRV on an EW background more than 80% relative to the controls. Thus, VP4 appears to function as the cell attachment protein in vivo as well as in vitro.  相似文献   

14.
Using different sorbents for the concentration of enteroviruses   总被引:2,自引:0,他引:2  
Comparative investigations were carried out to evaluate the efficiency of concentration (EC) of enteroviruses (poliovirus type 1 and simian rotavirus SA-11) using macroporous glass (brands MPG-1000 VGKh, USSR, and SO1, Czechoslovakia) and membrane filters (MF): (nitrocellulose PNTs 0.45, USSR, Millipore HAWP 0.45, USA, Synpor 0.45, Czechoslovakia as well as polycapromide MF Pall 0.2, FRG, and FMPA 0.55, USSR). To assess the sorption properties of filters, poliovirus preparations and rabbit serum gamma-globulin were labelled with radioactive isotopes. Nitrocellulose filters (Millipore and PNTs) proved to be superior in providing for 64-90% virus sorption and 20-24% protein sorption. Elution experiments using solutions of different chemical nature--protein solutions (triptosophosphate broth and beef extract), amino acid mixture (glycine + arginine), chaotropic salt (sodium trichloroacetate mixed with lysine)--showed that protein solutions better eluted rotavirus SA-11 from nitrocellulose filters and macroporous glass (MPG). The utilization of nitrocellulose filters and MPG as sorbents enables a 10-40-fold concentration of enteroviruses depending on the chosen eluent. Comparisons of EC values for rotavirus SA-11 obtained using porous glass MPS-1000 VGKh and SO1 indicated that MPS-1000 VGKh was superior both with respect to recovery efficiency (R) and concentration factor (CF).  相似文献   

15.
16.
17.
As part of our studies on the ecology of human enteric viruses, an improved method for detection of rotaviruses in water was developed, and their presence in Galveston Bay was monitored. Samples (378 liters) of estuarine water adjusted to pH 3.5 and a final AlCl3 molarity of 0.001 were filtered through 25-cm pleated cartridge-type filters (Filterite Corp., Timonium, Md.) of 3.0- and 0.45-micron porosity. Adsorbed virus was eluted with 1 liter of 10% tryptose phosphate broth, pH 9.5. Primary eluates were reconcentrated to a final volume of 10 to 20 ml by a simple and rapid magnetic iron oxide adsorption and elution procedure. Two percent casein at pH 8.5 effectively eluted rotavirus from iron oxide. A total of 21 of 72 samples of water, suspended solids, fluffy sediments, and compact sediments collected in different seasons in Galveston Bay yielded rotaviruses. Recovery of rotaviruses varied from 119 to 1,000 PFU/378 liters of water, 1,200 PFU/1,000 g of compact sediment, 800 to 3,800 PFU/378 liters of fluffy sediment, and 1,800 to 4,980 PFU from suspended solids derived from 378 liters of water based on immunofluorescent foci counts on cover slip cultures of fetal monkey kidney cells.  相似文献   

18.
As part of our studies on the ecology of human enteric viruses, an improved method for detection of rotaviruses in water was developed, and their presence in Galveston Bay was monitored. Samples (378 liters) of estuarine water adjusted to pH 3.5 and a final AlCl3 molarity of 0.001 were filtered through 25-cm pleated cartridge-type filters (Filterite Corp., Timonium, Md.) of 3.0- and 0.45-micron porosity. Adsorbed virus was eluted with 1 liter of 10% tryptose phosphate broth, pH 9.5. Primary eluates were reconcentrated to a final volume of 10 to 20 ml by a simple and rapid magnetic iron oxide adsorption and elution procedure. Two percent casein at pH 8.5 effectively eluted rotavirus from iron oxide. A total of 21 of 72 samples of water, suspended solids, fluffy sediments, and compact sediments collected in different seasons in Galveston Bay yielded rotaviruses. Recovery of rotaviruses varied from 119 to 1,000 PFU/378 liters of water, 1,200 PFU/1,000 g of compact sediment, 800 to 3,800 PFU/378 liters of fluffy sediment, and 1,800 to 4,980 PFU from suspended solids derived from 378 liters of water based on immunofluorescent foci counts on cover slip cultures of fetal monkey kidney cells.  相似文献   

19.
应用ELISA直接双抗体夹心法检查轮状病毒抗原,24份仔猪和29份犊牛的腹泻粪样,分别有12和16份阳性。用病毒RNA电泳分析检查阳性粪样,各出现两种病毒RNA电泳型,用中和试验检查17份成年牛和16份成年猪血清,分别有16和15份病毒抗体阳性。将其与ELISA间接法和结合法进行了比较。  相似文献   

20.
The diagnostic potential of cloned cDNA copies of human rotavirus (strain WA) genome segments for the detection of rotavirus in clinical specimens has been determined. A hybridization assay in which a mixture of 32P-labeled cDNAs representing the 11 rotavirus segments was used as a probe compared favorably with three frequently used diagnostic tests for rotavirus in terms of both specificity and sensitivity. Significantly, clinical isolates could be readily distinguished when cloned cDNA copies of individual genome segments were used independently as a probe. In assays in which genome RNA from rotaviruses of known subgroups and serotypes were tested, cloned probes that encode nonstructural viral proteins hybridized efficiently to genome RNAs of all strains, whereas cloned probes corresponding to genome segments 6 and 9 exhibited the potential for differentiating strains of different subgroups and serotypes. Cloned cDNA copies of rotavirus genome segments therefore offer considerable potential for improved general diagnosis of rotavirus in clinical specimens, as well as for epidemiological studies in which virus isolates can be distinguished on the basis of nucleotide sequence homology of individual genome segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号