首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochromebc 1 complex purified fromP. denitrificans has the same electron-transfer and energy-transducing activities, is sensitive to the same electron-transfer inhibitors, and contains cytochromesb, c 1, iron-sulfur protein, and thermodynamically stable ubisemiquinone identical to the counterpart complexes from mitochondria. However, the bacterialbc 1 complex consists of only three proteins, the obligate electron-transfer proteins, while the mitochondrial complexes contain six or more supernumerary poly-peptides, which have no obvious electron-transfer function. TheP. denitrificans complex is a paradigm for thebc 1 complexes of all gram-negative bacteria. In addition, because of its simple polypeptide composition and apparently minimal damage during isolation, theP. denitrificans bc 1 complex is an ideal system in which to study structure-function relationships requisite to energy transduction linked to electron transfer.  相似文献   

2.
Respiratory oxidative phosphorylation represents a central functionality in plant metabolism, but the subunit composition of the respiratory complexes in plants is still being defined. Most notably, complex II (succinate dehydrogenase) and complex IV (cytochrome c oxidase) are the least defined in plant mitochondria. Using Arabidopsis mitochondrial samples and 2D Blue-native/SDS-PAGE, we have separated complex II and IV from each other and displayed their individual subunits for analysis by tandem mass spectrometry and Edman sequencing. Complex II can be discretely separated from other complexes on Blue-native gels and consists of eight protein bands. It contains the four classical SDH subunits as well as four subunits unknown in mitochondria from other eukaryotes. Five of these proteins have previously been identified, while three are newly identified in this study. Complex IV consists of 9–10 protein bands, however, it is more diffuse in Blue-native gels and co-migrates in part with the translocase of the outer membrane (TOM) complex. Differential analysis of TOM and complex IV reveals that complex IV probably contains eight subunits with similarity to known complex IV subunits from other eukaryotes and a further six putative subunits which all represent proteins of unknown function in Arabidopsis. Comparison of the Arabidopsis data with Blue-native/SDS-PAGE separation of potato and bean mitochondria confirmed the protein band complexity of these two respiratory complexes in plants. Two-dimensional Blue-native/Blue-native PAGE, using digitonin followed by dodecylmaltoside in successive dimensions, separated a diffusely staining complex containing both TOM and complex IV. This suggests that the very similar mass of these complexes will likely prevent high purity separations based on size. The documented roles of several of the putative complex IV subunits in hypoxia response and ozone stress, and similarity between new complex II subunits and recently identified plant specific subunits of complex I, suggest novel biological insights can be gained from respiratory complex composition analysis.  相似文献   

3.
Heazlewood JL  Whelan J  Millar AH 《FEBS letters》2003,540(1-3):201-205
The FO portion of the mitochondrial ATP synthase contains a range of different subunits in bacteria, yeast and mammals. A search of the Arabidopsis genome identified sequence orthologs for only some of these subunits. Blue native polyacrylamide gel electrophoresis separation of Arabidopsis mitochondrial respiratory chain complexes revealed intact F1FO, and separated F1 and FO components. The subunits of each complex were analysed by mass spectrometry and matched to Arabidopsis genes. In the F1FO complex a series of nine known subunits were identified along with two additional proteins matching the predicted products of the mitochondrial encoded orfB and orf25 genes. The F1 complex contained the five well-characterised F1 subunits, while four subunits in the FO complex were identified: subunit 9, d subunit, and the orfB and orf25 products. Previously, orfB has been suggested as the plant equivalent of subunit 8 based on structural and sequence similarity. We propose that orf25 is the plant b subunit based on structural similarity and its presence in the FO complex. Chimerics of orf25, orfB, subunit 9 and subunit 6 have been associated with cytoplasmic male sterility in a variety of plant species, our additional findings now place all these proteins in the same protein complex.  相似文献   

4.
Lushy A  Verchovsky L  Nechushtai R 《Biochemistry》2002,41(37):11192-11199
Photosystem I (PSI) is a photochemically active membrane protein complex that functions at the reducing site of the photosynthetic electron-transfer chain as plastocyanin-ferredoxin oxidoreductase. PsaE, a peripheral subunit of the PSI complex, plays an important role in the function of PSI. PsaE is involved in the docking of ferredoxin/flavodoxin to the PSI complex and also participates in the cyclic electron transfer around PSI. The molecular characterization of the assembly of newly synthesized PsaE in the thylakoid membranes or in isolated PSI complexes is the subject of the present study. For this purpose the Mastigocladus laminosus psaE gene was cloned and overexpressed in Escherichia coli, and the resulting PsaE protein was purified to homogeneity by affinity chromatography. The purified PsaE was then introduced into thylakoids isolated from M. laminosus, and the newly introduced PsaE subunit saturates the membrane. The solubilization and separation of the different thylakoid protein complexes indicated that PsaE accumulates specifically in its functional location, the PSI complex. A similar stable assembly was detected when PsaE was introduced into purified PSI complexes, i.e., in the absence of other thylakoid components. This strongly indicates that the information for the stable assembly of PsaE into PSI lies within the polypeptide itself and within other subunits of the PSI complex that interact with it. To determine the nature of these interactions, the assembly reaction was performed in conditions affecting the ionic/osmotic strength. We found that altering the ionic strength significantly affects the capability of PsaE to assemble into isolated thylakoids or PSI complexes, strongly supporting the fact that electrostatic interactions are formed between PsaE and other PSI subunits. Moreover, the data suggest that the formation of electrostatic interactions occurs concomitantly with an exchange step in which newly introduced PsaE replaces the subunit present in situ.  相似文献   

5.
Complete nucleotide sequences are now available for the pet (fbc) operons coding for the three electron carrying protein subunits of the cytochrome bc 1 complexes of four photosynthetic purple non-sulfur bacteria. It has been demonstrated that, although the complex from one of these bacteria may contain a fourth subunit, three subunit complexes appear to be fully functional. The ligands to the three hemes and the one [2Fe-2S] cluster in the complex have been identified and considerable progress has been made in mapping the two quinone-binding sites present in the complex, as well as the binding sites for quinone analog inhibitors. Hydropathy analyses and alkaline phosphatase fusion experiments have provided considerable insight into the likely folding pattern of the cytochrome b peptide of the complex and identification of the electrogenic steps associated with electron transport through the complex has allowed the orientation within the membrane of the electron-carrying groups of the complex to be modeled.  相似文献   

6.
The proton-pumping NADH:ubiquinone oxidoreductase is the first of the respiratory chain complexes in many bacteria and the mitochondria of most eukaryotes. In general, the bacterial complex consists of 14 different subunits. In addition to the homologues of these subunits, the mitochondrial complex contains approximately 31 additional proteins. While it was shown that the mitochondrial complex is assembled from distinct intermediates, nothing is known about the assembly of the bacterial complex. We used Escherichia coli mutants, in which the nuo-genes coding the subunits of complex I were individually disrupted by an insertion of a resistance cartridge to determine whether they are required for the assembly of a functional complex I. No complex I-mediated enzyme activity was detectable in the mutant membranes and it was not possible to extract a structurally intact complex I from the mutant membranes. However, the subunits and the cofactors of the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of some of the nuo-mutants. It is discussed whether this fragment represents an assembly intermediate. In addition, a membrane-bound fragment exhibiting NADH/ferricyanide oxidoreductase activity and containing the iron-sulfur cluster N2 was detected in one mutant.  相似文献   

7.
Photosystem II is a multisubunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts. It consists of a large number of intrinsic membrane proteins involved in light-harvesting and electron-transfer processes and of a number of extrinsic proteins required to stabilize photosynthetic oxygen evolution. We studied the structure of dimeric supercomplexes of photosystem II and its associated light-harvesting antenna by electron microscopy and single-particle image analysis. Comparison of averaged projections from native complexes and complexes without extrinsic polypeptides indicates that the removal of 17 and 23 kDa extrinsic subunits induces a shift of about 1.2 nm in the position of the monomeric peripheral antenna protein CP29 toward the central part of the supercomplex. Removal of the 33 kDa extrinsic protein induces an inward shift of the strongly bound trimeric light-harvesting complex II (S-LHCII) of about 0.9 nm, and in addition destabilizes the monomer-monomer interactions in the central core dimer, leading to structural rearrangements of the core monomers. It is concluded that the extrinsic subunits keep the S-LHCII and CP29 subunits in proper positions at some distance from the central part of the photosystem II core dimer to ensure a directed transfer of excitation energy through the monomeric peripheral antenna proteins CP26 and CP29 and/or to maintain sequestered domains of inorganic cofactors required for oxygen evolution.  相似文献   

8.
Shao J  Zhang Y  Yu J  Guo L  Ding Y 《PloS one》2011,6(5):e20342
Thylakoid membrane complexes of rice (Oryza sativa L.) play crucial roles in growth and crop production. Understanding of protein interactions within the complex would provide new insights into photosynthesis. Here, a new "Double-Strips BN/SDS-PAGE" method was employed to separate thylakoid membrane complexes in order to increase the protein abundance on 2D-gels and to facilitate the identification of hydrophobic transmembrane proteins. A total of 58 protein spots could be observed and subunit constitution of these complexes exhibited on 2D-gels. The generality of this new approach was confirmed using thylakoid membrane from spinach (Spinacia oleracea) and pumpkin (Cucurita spp). Furthermore, the proteins separated from rice thylakoid membrane were identified by the mass spectrometry (MS). The stromal ridge proteins PsaD and PsaE were identified both in the holo- and core- PSI complexes of rice. Using molecular dynamics simulation to explore the recognition mechanism of these subunits, we showed that salt bridge interactions between residues R19 of PsaC and E168 of PasD as well as R75 of PsaC and E91 of PsaD played important roles in the stability of the complex. This stromal ridge subunits interaction was also supported by the subsequent analysis of the binding free energy, the intramolecular distances and the intramolecular energy.  相似文献   

9.
In eubacteria, the respiratory bc(1) complex (complex III) consists of three or four different subunits, whereas that of mitochondria, which have descended from an alpha-proteobacterial endosymbiont, contains about seven additional subunits. To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we purified complex III of Seculamonas ecuadoriensis, a member of the jakobid protists, which possess the most bacteria-like mitochondrial genomes known. The S. ecuadoriensis complex III has an apparent molecular mass of 460 kDa and exhibits antimycin-sensitive quinol:cytochrome c oxidoreductase activity. It is composed of at least eight subunits between 6 and 46 kDa in size, including two large "core" subunits and the three "respiratory" subunits. The molecular mass of the S. ecuadoriensis bc(1) complex is slightly lower than that reported for other eukaryotes, but about 2x as large as complex III in bacteria. This indicates that the departure from the small bacteria-like complex III took place at an early stage in mitochondrial evolution, prior to the divergence of jakobids. We posit that the recruitment of additional subunits in mitochondrial respiratory complexes is a consequence of the migration of originally alpha-proteobacterial genes to the nucleus.  相似文献   

10.
The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on their mETC in every known stage of their complicated life cycles. Here, using a complexome profiling proteomic approach, we have characterised the Toxoplasma mETC complexes and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and F1Fo-ATP synthase of Toxoplasma, of which 16 have not been identified previously. Notably, our complexome profile elucidates the composition of the Toxoplasma complex III, the target of clinically used drugs such as atovaquone. We identified two new homologous subunits and two new parasite-specific subunits, one of which is broadly conserved in myzozoans. We demonstrate all four proteins are essential for complex III stability and parasite growth, and show their depletion leads to decreased mitochondrial potential, supporting their assignment as complex III subunits. Our study highlights the divergent subunit composition of the apicomplexan mETC and F1Fo-ATP synthase complexes and sets the stage for future structural and drug discovery studies.  相似文献   

11.
12.
The highly efficient electron-transfer chain in photosynthesis demonstrates a remarkable variation among organisms in the type of interactions between the soluble electron-transfer protein plastocyanin and it partner cytochrome f. The complex from the cyanobacterium Nostoc sp. PCC 7119 was studied using nuclear magnetic resonance spectroscopy and compared to that of the cyanobacterium Phormidium laminosum. In both systems, the main site of interaction on plastocyanin is the hydrophobic patch. However, the interaction in the Nostoc complex is highly dependent on electrostatics, contrary to that of Phormidium, resulting in a binding constant that is an order of magnitude larger at low ionic strength for the Nostoc complex. Studies of the mixed complexes show that these differences in interactions are mainly attributable to the surface properties of the plastocyanins.  相似文献   

13.
A method has been developed for purification of highly active ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes from wild-type Rhodobacter sphaeroides, Rhodobacter capsulatus MT1131, bovine heart and yeast mitochondria. This is the first report of the isolation of cytochrome bc1 complex from a wild-type strain of Rb. sphaeroides and from any strain of Rb. capsulatus. The purification involves extraction of membranes with dodecyl maltoside and two successive DEAE column chromatography steps. All of the resulting bc1 complexes are free of succinate dehydrogenase and cytochrome c oxidase activities. The purified bc1 complexes from both photosynthetic bacteria contain four polypeptide subunits, although the molecular weights of some of their subunits differ. They are also free of reaction center and light-harvesting pigments and polypeptides. The turnover number of the Rb. sphaeroides complex is 128 s-1, and that of the Rb. capsulatus complex is 64 s-1. The bc1 complex from bovine heart contains eight polypeptides and has a turnover number of 1152 s-1, while the yeast complex contains nine polypeptides and has a turnover number of 219 s-1. The activities of these complexes are equal to or better than those commonly obtained by previously reported methods. This method of purification is relatively simple, reproducible, and yields cytochrome bc1 complexes which largely retain the turnover number of the starting material and are pure on the basis of optical spectra, enzymatic activities and polypeptide composition. The purification of cytochrome bc1 complexes from energy-transducing membranes which differ markedly in their lipid and protein composition makes it likely that with minor modifications this method could be applied to species other than those described here.  相似文献   

14.
The iron-quinone electron-acceptor complex of photosystem II   总被引:1,自引:0,他引:1  
The iron quinone-complex of the reaction centers of photosystem II and the purple non-sulphur photosynthetic bacteria contains two quinones, QA and QB connected in series with respect to electron transfer, and separated by a non-heme iron coordinated by amino acid residues. It is the site of inhibition of many of the common photosynthetic herbicides, which act by displacing QB from the center. The complex is responsible for reducing QB to QBH2 in two successive one-electron photo acts. OBH2 dissociates from the center, to be replaced by a new QB molecule and reduces the following membrane-bound electron-transfer complex (cytochrome b6/for b/c1) . The energetic, kinetics and mechanism of complex function are reviewed here. Recent crystallographic, spectroscopic and molecular biological evidence has produced a considerable quantity of structural information on this complex. These data have given a less formal and more molecular view of how the complex functions. They have also revealed fundamental differences between the photo system II and bacterial complexes, particularly with respect to the coordination of the iron and its chemistry. The comparative anatomy of the complexes is reviewed and its implications for function discussed.  相似文献   

15.
Oligosaccharyltransferase (OST) catalyzes the cotranslational transfer of high-mannose sugars to nascent polypeptides during N-linked glycosylation in the rough endoplasmic reticulum lumen. Nine OST subunits have been identified in yeast. However, the composition and organization of mammalian OST remain unclear. Using two-dimensional Blue Native polyacrylamide gel electrophoresis/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry, we now demonstrate that mammalian OST can be isolated from solubilized, actively engaged ribosomes as multiple distinct protein complexes that range in size from approximately 500 to 700 kDa. These complexes exhibit different ribosome affinities and subunit compositions. The major complex, OSTC(I), had an apparent size of approximately 500 kDa and was readily released from ribosome translocon complexes after puromycin treatment under physiological salt conditions. Two additional complexes were released only after treatment with high salt: OSTC(II) ( approximately 600 kDa) and OSTC(III) ( approximately 700 kDa). Both remained stably associated with heterotrimeric Sec61alphabetagamma, while OSTC(III) also contained the tetrameric TRAP complex. All known mammalian OST subunits (STT3-A, ribophorin I, ribophorin II, OST48, and DAD1) were present in all complexes. In addition, two previously uncharacterized proteins were also copurified with OST. Mass spectrometry identified a 17 kDa protein as DC2 which is weakly homologous to the C-terminal half of yeast Ost3p and Ost6p. The second protein (14 kDa) was tentatively identified as keratinocyte-associated protein 2 (KCP2) and has no previously known function. Our results identify two potential new subunits of mammalian OST and demonstrate a remarkable heterogeneity in OST composition that may reflect a means for controlling nascent chain glycosylation.  相似文献   

16.
17.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

18.
The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.  相似文献   

19.
The mitochondrial inner membrane harbors the complexes of the respiratory chain and translocase complexes for precursor proteins. We have identified a further subunit of the carrier translocase (TIM22 complex) that surprisingly is identical to subunit 3 of respiratory complex II, succinate dehydrogenase (Sdh3). The membrane-integral protein Sdh3 plays specific functions in electron transfer in complex II. We show by genetic and biochemical approaches that Sdh3 also plays specific functions in the TIM22 complex. Sdh3 forms a subcomplex with Tim18 and is involved in biogenesis and assembly of the membrane-integral subunits of the TIM22 complex. We conclude that the assembly of Sdh3 with different partner proteins, Sdh4 and Tim18, recruits it to two different mitochondrial membrane complexes with functions in bioenergetics and protein biogenesis, respectively.  相似文献   

20.
Cytochrome b 6 f complexes, prepared from spinach and Chlamydomonas thylakoids, have been examined for their content of low molecular weight subunits. The spinach complex contains two prominent low molecular weight subunits of 3.7 and 4.1 kD while a single prominent component of 4.5 kD was present in the Chlamydomonas complex. An estimation of the relative stoichiometry of these subunits suggests several are present at levels approximating one copy per cytochrome complex. The low molecular weight subunits were purified by reversed phase HPLC and N-terminal sequences obtained. Both the spinach and Chlamydomonas cytochrome complexes contain a subunit that is identified as the previously characterized petG gene product (4.8 kD in spinach and 4.1 kD in Chlamydomonas). A second subunit (3.8 kD in spinach and 3.7 kD in Chlamydomonas) appears to be homologous in the two complexes and is likely to be a nuclear gene product. The possible presence of other low molecular weight subunits in these complexes is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号