首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Inoculation of Vicia sativa subsp. nigra (V. sativa) roots with Rhizobium leguminosarum biovar. viciae (R.l. viciae) bacteria substantially increases the ability of V. sativa to induce rhizobial nodulation (nod) genes. This increase is caused by the additional release of flavanones and chalcones which all induce the nod genes of R.l. viciae (K. Recourt et al., Plant Mol Biol 16: 841–852). In this paper, we describe the analyses of the flavonoids present in roots of V. sativa. Independent of inoculation with R.l. viciae, these roots contain four 3-O-glycosides of the flavonol kaempferol. These flavonoids appeared not capable of inducing the nod genes of R.l. viciae but instead are moderately active in inhibiting the activated state of those nod genes. Roots of 7-day-old V. sativa seedlings did not show any kaempferol-glycosidase activity consistent with the observation that kaempferol is not released upon inoculation with R.l. viciae. It is therefore most likely that inoculation with infective (nodulating) R.l. viciae bacteria results in de novo flavonoid biosynthesis and not in liberation of flavonoids from a pre-existing pool.  相似文献   

2.
Infective (nodulating) Rhizobium leguminosarum biovar viciae (R.l. viciae) bacteria release Nod factors which stimulate the release of nodulation gene-inducing flavanones and chalcones from roots of the host plant Vicia sativa subsp. nigra (K. Recourt et al., Plant Mol Biol 16: 841–852; H.P. Spaink et al., Nature 354: 125–130). The hypothesis that this release results from increased synthesis of flavonoids was tested by studying the effect of inoculation of V. sativa with infective and uninfective R.l. viciae bacteria on (i) activity of L-phenylalanine ammonia-lyase, (ii) level of chalcone synthase mRNA, and (iii) activity of (eriodictyol) methyltransferase in roots. Consistent with the hypothesis, each of these parameters was found to increase 1.5 to 2-fold upon inoculation with infective R.l. viciae bacteria relative to the situation for uninoculated roots and for roots inoculated with uninfective rhizobia.  相似文献   

3.
Thirty Tn5- or Tn1831-induced nodulation (nod) mutants of Rhizobium leguminosarum were examined for their genetic and symbiotic properties. Thirteen mutants contained a deletion in Sym plasmid pRL1JI. These deletions cover the whole nod region and are 50 kb in size. All remaining seventeen mutations are located in a 6.6 kb EcoRI nod fragment of the Sym plasmid. Mutations in a 3.5 kb part on the right hand side of this 6.6 kb fragment completely prevent nodulation on Vicia sativa. All mutants in this 3.5 kb area are unable to induce marked root hair curling and thick and short roots.Mutations in a 1.5 kb area on the left hand side of the 6.6 kb nod fragment generate other symbiotic defects in that nodules are only rarely formed and only so after a delay of several days. Moreover, infection thread formation is delayed and root hair curling is more excessive than that caused by the parental strain. Their ability to induce thick and short roots is unaltered.Mutations in this 1.5 kb region are not complemented by pRmSL26, which carries nod genes of R. meliloti, whereas mutations in the 3.5 kb region are all complemented by pRmSL26.Abbreviations Rps repression of production of small bacteriocin - Mep medium bacteriocin production - Nod nodulation - Fix fixation - Tsr thick and short roots - Flac root hair curling - Hsp host specificity - Flad root hair deformation - Tc tetracycline - Km kanamycin - Cm chloramphenicol - Sp spectinomycin - Sm streptomycin - R resistant  相似文献   

4.
5.
In addition to the flavonoids exuded by many legumes as signals to their rhizobial symbionts, alfalfa (Medicago sativa L.) releases two betaines, trigonelline and stachydrine, that induce nodulation (nod) genes inRhizobium meliloti. Experiments with14C-phenylalanine in the presence and absence of phenylalanine ammonia-lyase inhibitors show that exudation of flavonoidnod-gene inducers from alfalfa roots is linked closely to their concurrent synthesis. In contrast, flavonoid and betainenod-gene inducers are already present on mature seeds before they are released during germination. Alfalfa seeds and roots release structurally differentnod-gene-inducing signals in the absence of rhizobia. WhenR. meliloti is added to roots, medicarpin, a classical isoflavonoid phytoalexin normally elicited by pathogens, and anod-gene-inducing compound, formononetin-7-O-(6-O-malonylglycoside), are exuded. Carbon flow through the phenylpropanoid pathway and into the flavonoid pathway via chalcone synthase is controlled by complexcis-acting sequences andtrans-acting factors which are not completely understood. Even less information is available on molecular regulation of the two other biosynthetic pathways that produce trigonelline and stachydrine. Presumably the three separate pathways for producingnod-gene inducers in some way protect the plant against fluctuations in the production or transmission of the two classes of signals. Factors influencing transmission of alfalfanod-gene inducers through soil are poorly defined, but solubility differences between hydrophobic flavonoids and hydrophilic betaines suggest that the diffusional traits of these molecules are not similar. Knowledge derived from studies of how legumes regulate rhizobial symbionts with natural plant products offers a basis for defining new fundamental concepts of rhizosphere ecology.  相似文献   

6.
We have used spot-inoculation and new cytological procedures to observe the earliest events stimulated in alfalfa (Medicago sativa L.) roots by Rhizobium meliloti. Roots were inoculated with 1–10 nl of concentrated bacteria, fixed in paraformaldehyde, and after embedding and sectioning stained with a combination of acridine orange and DAPI (4-6-diamidino-2-phenylindole hydrochloride). Normal R. meliloti provoke cell dedifferentiation and mitosis in the inner cortex of the root within 21–24 h after inoculation. This activation of root cells spreads progressively, leading to nodule formation. In contrast, the R. meliloti nodA and nodC mutants do not stimulate any activation or mitosis. Thus the primary and earliest effect of Rhizobium nod gene action is plant cellular activation. A rapid, whole-mount visualization by lactic acid shows that the pattern of nodule form varies widely. Some R. meliloti strains were found to be capable of stimulating on alfalfa roots both normal nodules and a hybrid structure intermediate between a nodule and a lateral root.  相似文献   

7.
In the biosynthesis of lipochitin oligosaccharides (LCOs) theRhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence ofnodA in thenodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which thenodA, nodB andnodC genes are separately present on different plasmids. Efficient nodulation was only obtained ifnodC was present on a low-copy-number vector. Our results confirm the notion thatnodA ofRhizobium leguminosarum biovarviciae is essential for nodulation onVicia. Surprisingly, replacement ofR. l. bv.viciae nodA by that ofBradyrhizobium sp. ANU289 results in a nodulation-minus phenotype onVicia. Further analysis revealed that theBradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of theR. l. bv.viciae nodF E-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion thatnodA is a commonnod gene should be revised.  相似文献   

8.
Summary Clones from aFrankia At4 gene bank were pooled into groups and mass conjugated into anodD mutant ofRhizobium leguminosarum bv.viciae by triparental matings. When peas were inoculated with the pooled transconjugants, nodulation was observed. A plasmid, pAt2GX containingFrankia DNA, was isolated from bacteria recovered from these nodules. This plasmid was shown to complement anodD mutant ofR. leguminosarum bv.viciae. Thus pAt2GX contains aFrankia gene that is functionally equivalent tonodD ofR. leguminosarum bv.viciae.  相似文献   

9.
The fate of 14C-naringenin during its specific activation of nod genes in Rhizobium leguminosarum bv. viciae was examined. After incubation with either strain RBL5560 or its pSym-cured derivative in a medium supplemented with 14C-naringenin at nod gene-inducing concentrations of 2 nM (ca. 12.5 kBq) plus cold acetate (0.5 M), a radiocarbon inventory for the cells and supernatant extracts was obtained. The level of 14C-label incorporation was also determined in the fractionated cellular components. Using 14C-acetate at 0.5 M (1036 kBq) and cold naringenin (2 nM) in incubations with strain RBL5560 as a separate treatment, the Nod metabolites were detected by thin layer and high performance liquid chromatographic methods and the data provided the basis for identification of the Nod factors from the supernatant obtained from 14C-naringenin treatments. Subsequent radio-biochemical and chemical analyses revealed that RBL5560 cells assimilated 14C-naringenin during the activation of nod genes. Our analysis also showed that labelled carbon atoms from the 14C-naringenin were incorporated into the acyl moiety of a lipo-oligosaccharide Nod factor, NodRlv IV, present in the culture supernatants of RBL5560. The pSym-cured derivative failed to synthesize any Nod metabolites in a 14C-naringenin supplemented medium. The tracing of flavonoid-derived carbon atoms to the acyl chain of a host-specific Nod factor, a moiety that defines host specificity for this Rhizobium, adds a new dimension to the signalling function of flavonoids in legume-Rhizobium interactions.Abbreviations Ac acyl chain - ca calculated approximately - dpm disintegrations per minute - HPLC High Performance Liquid Chromatography - pSym symbiotic plasmid - R. Rhizobium - TLC Thin Layer Chromatography  相似文献   

10.
Summary Strains of Rhizobium leguminosarum (R. l.) biovar viciae containing pss mutations fail to make the acidic exopolysaccharides (EPS) and are unable to nodulate peas. It was found that they also failed to nodulate Vicia hirsuta, another host of this biovar. When peas were co-inoculated with pss mutant derivatives of a strain of R.l. bv viciae containing a sym plasmid plus a cured strain lacking a sym plasmid (and which is thus Nod-, but for different reasons) but which makes the acidic EPS, normal numbers of nodules were formed, the majority of which failed to fix nitrogen (the occasional Fix+ nodules were pressumably induced by strains that arose as a result of genetic exchange between cells of the two inoculants in the rhizosphere). Bacteria from the Fix- nodules contained, exclusively, the strain lacking its sym plasmid. When pss mutant strains were co-inoculated with a Nod- strain with a mutation in the regulatory gene nodD (which is on the sym plasmid pRL1JI), normal numbers of Fix+ nodules were formed, all of which were occupiced solely by the nodD mutant strain. Since a mutation in nodD abolishes activation of other nod genes required for early stages of infection, these nod genes appear to be dispensable for subsequent stages in nodule development. Recombinant plasmids, containing cloned pss genes, overcame the inhibitory effects of psi, a gene which when cloned in the plasmid vector pKT230, inhibits both EPS production and nodulation ability. Determination of the sequence of the pss DNA showed that one, or perhaps two, genes are required for correcting strains that either carry pss mutations or contain multi-copy psi. The predicted polypeptide product of one of the pss genes had a hydrophobic aminoterminal region, suggesting that it may be located in the membrane. Since the psi gene product may also be associated with the bacterial membrane, the products of psi and pss may interact with each other.  相似文献   

11.
Legume lectin stimulates infection of roots in the symbiosis between leguminous plants and bacteria of the genus Rhizobium. Introduction of the Pisum sativum lectin gene (psl) into white clover hairy roots enables heterologous infection and nodulation by the pea symbiont R. leguminosarum biovar viciae (R.l. viciae). Legume lectins contain a specific sugar-binding site. Here, we show that inoculation of white clover hairy roots co-transformed with a psl mutant encoding a non-sugar-binding lectin (PSL N125D) with R.l. viciae yielded only background pseudo-nodule formation, in contrast to the situation after transformation with wild type psl or with a psl mutant encoding sugar-binding PSL (PSL A126V). For every construct tested, nodulation by the homologous symbiont R.l. trifolii was normal. These results strongly suggest that (1) sugar-binding activity of PSL is necessary for infection of white clover hairy roots by R.l. viciae, and (2) the rhizobial ligand of host lectin is a sugar residue rather than a lipid.  相似文献   

12.
Lithgow  J.K.  Danino  V. E.  Jones  J.  Downie  J.A. 《Plant and Soil》2001,232(1-2):3-12
Strains of Rhizobium leguminosarum use a cell density-dependent gene regulatory system to assess their population density. This is achieved by the accumulation of N-acyl-homoserine lactones (AHLs) in the environment during growth of the bacteria and these AHLs stimulate the induction of various bacterial genes that are up-regulated in the late-exponential and stationary phases of growth. A genetically well-characterised strain of R. leguminosarum biovar viciae was found to have four genes, whose products synthesise different AHLs. We have analysed AHL production by four genetically distinct isolates of R. leguminosarum, three of bv. viciae and one of bv. phaseoli. Distinct differences were seen in the pattern of AHLs produced by the bv. viciae strains compared with bv. phaseoli and the increased levels and diversity of AHLs found in bv. viciae strains can be attributed to the rhiI gene, which is located on the symbiotic (Sym) plasmid and is up-regulated when the bacteria are grown in the rhizosphere. Additional complexity to the profile of AHLs is found to be associated with highly transmissible plasmid pRL1JI of R. leguminosarum bv. viciae, but this is not observed with some other strains, including those carrying different transmissible plasmids. In addition to AHLs produced by the products of genes on the symbiotic plasmid, there is clear evidence for the presence of other AHL production loci. Expression levels and patterns of AHLs can change markedly in different growth media. These results indicate that there is a network of quorum-sensing loci in different strains of R. leguminosarum and these loci may play a role in adapting to rhizosphere growth and plasmid transfer.  相似文献   

13.
Summary A microscopic assessment is presented of the comparative infection capacity of wild-type and hybrid strains ofRhizobium leguminosarum bv.viciae withR. l. bv.trifolii strain ANU 843 on white clover seedlings. TheR. l. bv.viciae hybrid strains contained defined DNA segments coding for different combinations ofR. l. bv.trifolii host-specific nodulation genes. White clover plants were examined over a 72 h period to assessRhizobium infectivity, the morphological changes in root hair growth; colonisation ability of rhizobia; infection thread initiation and the ability to induce cortical cell division.R. l. bv.viciae strain 300 induced root hair curling more slowly than strain ANU 843 or any of the hybrid strain 300 bacteria, and when curling had taken place, there was poorer colonization by strain 300 within the folded hair cell, no evidence of infection thread formation and only limited cortical cell division 72 h after inoculation. The addition of the host-specific nodulation genes ofR. l. bv.trifolii to strain 300 was necessary to induce infection threads and establish a normal pattern of nodulation of the roots of white clovers.  相似文献   

14.
Alfalfa (Medicago sativa L.) releases different flavonoids from seeds and roots. Imbibing seeds discharge 3′,4′,5,7-substituted flavonoids; roots exude 5-deoxy molecules. Many, but not all, of these flavonoids induce nodulation (nod) genes in Rhizobium meliloti. The dominant flavonoid released from alfalfa seeds is identified here as quercetin-3-O-galactoside, a molecule that does not induce nod genes. Low concentrations (1-10 micromolar) of this compound, as well as luteolin-7-O-glucoside, another major flavonoid released from germinating seeds, and the aglycones, quercetin and luteolin, increase growth rate of R. meliloti in a defined minimal medium. Tests show that the 5,7-dihydroxyl substitution pattern on those molecules was primarily responsible for the growth effect, thus explaining how 5-deoxy flavonoids in root exudates fail to enhance growth of R. meliloti. Luteolin increases growth by a mechanism separate from its capacity to induce rhizobial nod genes, because it still enhanced growth rate of R. meliloti lacking functional copies of the three known nodD genes. Quercetin and luteolin also increased growth rate of Pseudomonas putida. They had no effect on growth rate of Bacillus subtilis or Agrobacterium tumefaciens, but they slowed growth of two fungal pathogens of alfalfa. These results suggest that alfalfa can create ecochemical zones for controlling soil microbes by releasing structurally different flavonoids from seeds and roots.  相似文献   

15.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

16.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.  相似文献   

17.
18.
In split-root systems of alfalfa (Medicago sativa L.), already existing nodules or arbuscular mycorrhizal roots suppress further establishment of symbiosis in other root parts, a phenomenon named autoregulation. Roots treated with rhizobial nodulation signals (Nod factors) induce a similar systemic suppression of symbiosis.In order to test the hypothesis that flavonoids play a role in this systemic suppression, split-root systems of alfalfa plants were inoculated on one side of the split-root system with Sinorhizobium meliloti or Glomus mosseae or were treated with Nod factor. HPLC-analysis of alfalfa root extracts from both sides of the split-root system revealed a persistent local and systemic accumulation pattern of some flavonoids associated with the different treatments. The two flavonoids, formononetin and ononin, could be identified to be similarily altered after rhizobial or mycorrhizal inoculation or when treated with Nod factor.Exogenous application of formononetin and ononin partially restored nodulation and mycorrhization pointing towards the involvement of these two secondary compounds in the autoregulation of both symbioses.  相似文献   

19.
The curling of root hairs and the deformation response wereobserved when white clover was infected with homologous strainsof Rhizobium leguminosarum biovar trifolii 4S and 0403. In thecase of Rhizobium meliloti NZ and Rhizobium leguminosarum biovarviciae 128C53, however, curling was only induced when thesebacteria were pretreated with flavonoids: luteolin in the caseof R. meliloti and naringenin for R.I. viciae. The same resultswere obtained with oat, a monocotyledonous non-leguminous plant.The two flavonoids mentioned are secreted from the host plantsand induce the expression of genes for root hair curling (Hac)on Sym plasmid in homologous rhizobia, therefore, the curlingresponse in both white clover and oat appears to be correlatedwith the activation of the Hac genes. These results suggestthat a factor(s) that activates the Hac genes, such as 7,4'-dihydroxyflavonewhich is known as the factor required by R. I. trifolii, issecreted from the oat roots. (Received June 12, 1989; Accepted November 9, 1989)  相似文献   

20.
Summary A molecular map was constructed linking the nitrogenase structural genes (nif) and nodulation genes (nod) in the white clover symbiont, Rhizobium trifolii. In R. trifolii strain ANU843 these two genetic regions are located some 16 kilobases (kb) apart on the 180 kb symbiotic (Sym) plasmid. The molecular linkage of nod and nif genetic regions was established by hybridization analysis using recombinant plasmids containing overlapping cloned sequences. Nodulation genes were located by means of a Tn5-induced nodulation-defective mutant that failed to induce clover root hair curling (Hac- phenotype). A cloned wild-type DNA fragment was shown to phenotypically correct the Hac- mutation by complementation. The nifHDK genes were cloned by positive hybridization to another R. trifolii nif-specific probe. Location of the nif genes relative to the nod genes was established by analysis of a Sym plasmid deletion derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号