首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The properties and regulation of the polyamine transport system in brain are still poorly understood. The present study shows, for the first time, the existence of a polyamine transport system in cerebellar astrocytes and suggests that polyamine uptake is mediated by a single and saturable high-affinity transport system for putrescine, spermine, and spermidine (K:(m) = 3.2, 1.2, and 1.8 microM:, respectively). Although substitution of NaCl by choline chloride produced a decrease in the putrescine, spermine, and spermidine uptake, it seems that polyamine transport in cerebellar astrocytes is not mediated by an Na(+) cotransport as in the presence of Na(+) and cholinium, polyamine uptake was much lower than when measured in a sucrose-based medium. On the other hand, ouabain, gramicidin (a Na(+) ionophore), and ionomycin (a Ca(2+) ionophore) produced a strong inhibition of polyamine uptake, suggesting that membrane potential could have an important role in the functioning of the astroglial polyamine uptake system. Moreover, protein kinase C inhibition produced an enhancement of polyamine uptake, whereas stimulation of protein kinase C with phorbol esters inhibited polyamine uptake. Alternatively, the tyrosine kinase inhibitor genistein caused a marked reduction in the uptake. No effects on polyamine uptake were observed with inhibitors and activators of cyclic AMP-dependent protein kinase or when Ca(2+)/calmodulin-dependent protein kinase II was inhibited with KN-62. These results suggest that the polyamine uptake system in cerebellar astrocytes could be modulated by protein kinase C and tyrosine kinase activities.  相似文献   

2.
Glutathione is involved in the maintenance of the structural and functional integrity of membrane proteins, in protection against free radicals and oxidative stress, and in the detoxification of xenobiotics. The cellular uptake of cystine is the rate limiting step in the biosynthesis of glutathione. The precise mechanism for such uptake is not clear as some reports indicate that the uptake occurs through a glutamate-cystine antiporter (system X(c)(-)), whereas, others suggest that it is taken up by the glutamate transporter (system X(AG)). Our studies in cultured astrocytes derived from neonatal rats showed that glutamate, D- and L-aspartate inhibited cystine uptake; that factors that increased intracellular glutamate levels, which would have enhanced the activity of the antiporter, did not stimulate cystine uptake; that the uptake was sodium dependent and partially chloride dependent; that the b(o,+) and ASC systems, which have been shown to carry cystine in some cells, did not mediate cystine uptake in astrocytes; that glutamate uptake blockers such as L-aspartate-beta-hydroxamate (AbetaH) and L-trans-pyrrolidine-2,4-dicarboxylate (PDC), as well as cystine uptake inhibitor L-alpha-aminoadipate (AAA) potently reduced cystine uptake. Additionally, deferoxamine (100 microM) as well as ammonium chloride (5 mM), both of which inhibit glutamate uptake, also inhibited cystine uptake. Taken together, our findings indicate that astrocytes take up cystine through a similar, if not identical, system used to take up glutamate. Interference of cystine uptake by astrocytes through the glutamate transport system may have profound effects on the redox state and the structural and functional integrity of the CNS.  相似文献   

3.
Swelling and potassium uptake in cultured astrocytes   总被引:3,自引:0,他引:3  
The intracellular water content of astrocytes in primary cultures shows a biphasic swelling pattern on exposure to various increased external K+ concentrations over the range of 1.5-100 mM. The two phases (physiological, 1.5-12 mM K+; pathological, 25-100 mM K+) are based on two different mechanisms. Both can be blocked by low Cl- solutions and involve intensive net uptake of K+. However, the physiological phase consists of the activation of a KCl + NaCl carrier, while the Na+ in turn is pumped out by Na+-K+ ATPase, with a resultant net accumulation of KCl. At pathological K+ concentrations the KCl + NaCl carrier is less active because the Na+ driving force, its energy source, is reduced (owing to depolarization by K+). However, the Donnan equilibrium across the cell membrane is heavily disturbed, which leads to passive KCl accumulation. The results suggest that volume changes in cultured glial cells during exposure to high K+ should be taken into consideration since they disguise K+ accumulation when only ion activity is measured.  相似文献   

4.
The effect of ammonia onl-glutamate (L-GLU) uptake was examined in cultured astrocytes. Acute ammonia treatment (5–10 mM) enhanced L-[3H]GLU uptake by 20–42% by increasing the Vmax; this persisted for 2 days and then started to decline. Ammonia, however, did not affect the uptake ofd-[3H]aspartate (D-ASP), a non-metabolizable analog of L-GLU, that uses the same transport carrier as L-GLU. Also, L-GLU uptake was not affected during the first 2 min of the assay. Thus, ammonia did not have an acute effect on L-GLU transport (translocation); rather, ammonia enhanced the accumulation or “trapping” of L-GLU or its by-products. Chronic ammonia treatment, on the other hand, inhibited L-GLU transport in astrocytes by ∼30–45% and this was due to a decrease in Vmax, suggesting that the number of L-GLU transporters was decreased. This inhibitory effect was observed after 1 day of treatment and persisted for at least 7 days. The inhibition of L-GLU transport was partially reversible following removal of ammonia. The effects of ammonia on L-GLU transport and uptake may explain the abnormal L-GLU neurotransmission observed in hyperammonemia/hepatic encephalopathy, and the brain swelling associated with fulminant hepatic failure.  相似文献   

5.
Homotypically pure cultures of rat brain astrocytes were used to examine some aspects of non-neuronal A-system (alanine preferring) amino acid uptake. The Asystem specific probe, alpha-aminoisobutyric acid is transported rapidly, and a steady state distribution ratio of 9–25 is reached after 30 minute incubations. Kinetic estimates derived from uptake progress curves indicated aK m of 1.35 mM and aV max of 133 nmol/min/mg protein. Uptake is reduced in the absence of either Na+ or K+. Elevations in extracellular K+, a putative metabolic modulator of neuroglia, did not affect uptake.  相似文献   

6.
目的研究纯化培养的星形胶质细胞的体外生长特性,作为进一步研究星形胶质细胞功能的依据。方法将纯化的星形胶质细胞分为6h、12h、18h、24h、30h、36h、42h、48h、54h、60h、72h、84h、96h、120h14个时间组,培养不同的时间后,采用细胞计数法绘制细胞生长曲线观察细胞的生长状况,用流式细胞学检测细胞周期各时相的变化并绘制增殖指数曲线,所得数据用SPSS软件进行统计学分析。结果①星形胶质细胞的生长曲线可明显的分为三个阶段:第一阶段为0至24h,在此时间内生长曲线平缓上升,其斜率为0.64。第二阶段为24h至84h,在此时间内生长曲线急剧上升,其斜率为2.69;此阶段中24h至48h时曲线最陡,斜率为3.94,细胞呈指数生长。第三阶段为84h至120h,在此时间内生长曲线走势平直,其斜率为-0.005。②星形胶质细胞的增殖指数在第一个细胞增殖周期内可以反映细胞的增殖状态,第一个细胞周期结束后,细胞的数量继续上升增殖指数却降低了。结论培养的星形胶质细胞的生长过程分为潜伏期、指数生长期和停滞期三个阶段,其潜伏期为0至24h,指数生长期为24h至48h,停滞期为84h以后。单纯用增殖指数等类似的指标作为细胞增殖状态的判断标准是有一定局限性的,一定要将这些指标与细胞数量结合起来分析。  相似文献   

7.
8.
Starting from the experimental data on ATP evoked calcium responses in astrocytes, a biophysical model describing these phenomena was built. The simulations showed, in agreement with the experimental findings, that the intracellular calcium fluxes mediated by the P2X and P2Y purinoreceptors are responsible for the biphasic ATP evoked calcium response in astrocytes. Then, the modulation effects on the neural dynamics arising from the release of glutamate from astrocyte are also investigated. By using a minimal network model describing a neuron coupled to the astrocyte, we demonstrated that the calcium extrusion rate through the astrocyte membrane is critically involved in the generation of different firing patterns of the neuron.  相似文献   

9.
The inward transport of potassium by separated dog erythrocytes has been studied at concentrations of potassium in the medium from 2.9 to 25.0 m.eq./liter and at 38.0 and 33.0 degrees C. At the physiological concentration of external potassium (4.06 m.eq./liter medium), the inward potassium flux is 0.11 m.eq./liter cells hour and the glucose consumption is 2.0 mM/liter cells hour. The dependence of potassium influx on extracellular potassium concentration is given by the following equation, K influx (m.eq./liter cells hour) = 0.028 [K](amb.) - 0.003 in which [K](amb.) refers to the potassium concentration in the medium. In a single 93 hour experiment, 94 per cent of the intracellular potassium was exchanged at an apparently uniform rate. The average apparent activation energy for the process is 7,750 calories +/- 2,000 calories/mol and there is some indication that the apparent activation energy of inward K transport decreases with increasing external K concentration.  相似文献   

10.
The corpus callosum (CC) is the main white matter tract in the brain and is involved in interhemispheric communication. Using the whole-cell voltage-clamp technique, a study was made of K+-currents in primary cultured astrocytes from the CC of newborn rats. These cells were positive to glial fibrillary acidic protein after culturing in Dulbecco’s Modified Eagle Medium (> 95% of cells) or in serum-free neurobasal medium with G5 supplement (> 99% of cells). Astrocytes cultured in either medium displayed similar voltage-activated ion currents. In 81% of astrocytes, the current had a transient component and a sustained component, which were blocked by 4-aminopyridine and tetraethylammonium, respectively; and both had a reversal potential of ?66 mV, indicating that they were carried by K+ ions. Based on the Ba2+-sensitivity and activation kinetics of the K+-current, two groups of astrocytes were discerned. One group (55% of cells) displayed a strong Ba2+ blockade of the K+-current whose activation kinetics, time course of decay, and the current-voltage relationship were modified by Ba2+. This current was greatly blocked (52%) by Ba2+ in a voltage-dependent way. Another group (45% of cells) presented weak Ba2+-blockade, which was only blocked 24% by Ba2+. The activation kinetics and time course of decay of this current component were unaffected by Ba2+. These results may help to understand better the roles of voltage-activated K+-currents in astrocytes from the rat CC in particular and glial cells in general.  相似文献   

11.
The kinetics of (42)K uptake by Myxococcus xanthus during vegetative growth and microcyst formation were determined. In the medium studied, growing cells concentrated potassium about 100-fold, yielding an intracellular concentration of 147 mm. The influx of K(+) in growing cells was 17 +/- 3 pmoles of K(+)/cm(2) min. About 5 hr after induction of vegetative cells to microcysts, the K(+) influx decreased and the intracellular concentration fell. By 18 hr after induction, there was no measurable influx of K(+), and the intracellular concentration of potassium was less than 29 mm. There was, however, considerable binding of K(+) to the "surface" of microcysts. It is postulated that the greatly reduced intracellular concentration of potassium helps to maintain the microcyst in its dormant state and protects it against enzymatic break-down.  相似文献   

12.
Potassium depletion (KD) is a very common clinical entity often associated with adverse cardiac effects. KD is generally considered to reduce muscular Na-K-ATPase density and secondarily reduce K uptake capacity. In KD rats we evaluated myocardial Na-K-ATPase density, ion content, and myocardial K reuptake. KD for 2 wk reduced plasma K to 1.8 ± 0.1 vs. 3.5 ± 0.2 mM in controls (P < 0.01, n = 7), myocardial K to 80 ± 1 vs. 86 ± 1 µmol/g wet wt (P < 0.05, n = 7), increased Mg, and induced a tendency to increased Na. Myocardial Na-K-ATPase 2-subunit abundance was reduced by 30%, whereas increases in 1- and K-dependent pNPPase activity of 24% (n = 6) and 13% (n = 6), respectively, were seen. This indicates an overall upregulation of the myocardial Na-K pump pool. KD rats tolerated a higher intravenous KCl dose. KCl infusion until animals died increased myocardial K by 34% in KD rats and 18% in controls (P < 0.05, n = 6 for both) but did not induce different net K uptake rates between groups. However, clamping plasma K at 5.5 mM by KCl infusion caused a higher net K uptake rate in KD rats (0.22 ± 0.04 vs. 0.10 ± 0.03 µmol·g wet wt–1·min–1; P < 0.05, n = 8). In conclusion, a minor KD-induced decrease in myocardial K increased Na-K pump density and in vivo increased K tolerance and net myocardial K uptake rate during K repletion. Thus the heart is protected from major K losses and accumulates considerable amounts of K during exposure to high plasma K. This is of clinical interest, because a therapeutically induced rise in myocardial K may affect contractility and impulse generation-propagation and may attenuate increased myocardial Na, the hallmark of heart failure. Na-K-ATPase; ion homeostasis; heart failure; iatrogenic potassium depletion  相似文献   

13.
14.
In the mouse cell-lines cultured in vitro, viz. L-cells and mouse embryo fibroblasts, the methylation of homocysteine to methionine is carried out by vitamin B12-dependent 5-methyltetrahydrofolate:L-homocysteine methyltransferase only. In these cells grown in the standard Eagle medium, the activity of another methyltransferase, which utilizes betaine as the methyl donor, was not detected. The high activity of the vitamin B12-dependent methionine synthetase is typical for mouse cells from the logarithmic phase of growth. In L-cells 60%, and in the mouse fibroblasts 30% of the enzyme exist in the holo-form; the ratio between the holo- and apoenzyme activity remains stable in cells from logarithmic and stationary cultures. The level of the activity of methionine synthetase strongly depends on the presence of vitamin B12, folate and methionine in the culture medium and is greater after prolonged contact of the cells with these agents.  相似文献   

15.
Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes   总被引:1,自引:0,他引:1  
Endothelin-1 (ET-1) is a potent vasoconstrictorpeptide that is also known to induce a wide spectrum of biologicalresponses in nonvascular tissue. In this study, we found that ET-1 (100 nM) inhibited the glutamate uptake in cultured astrocytes expressing the glutamate/aspartate transporter (GLAST); astrocytes did not expressthe glutamate transporter-1 (GLT-1). The Vmaxand the Km of the glutamate uptake were reducedby 57% and 47%, respectively. Application of the ETA andETB receptor antagonists BQ-123 and BQ-788 partly inhibitedthe ET-1-evoked decrease in the glutamate uptake, whereas thenonspecific ET receptor antagonist bosentan completely inhibited thisdecrease. Incubation of the cultures with pertussis toxin abolished theeffect of ET-1 on the uptake. The ET-1-induced decrease in theglutamate uptake was independent of extracellular free Ca2+concentration, whereas the intracellular Ca2+ antagoniststhapsigargin and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester abolished the effect of ET-1 on the glutamate uptake. Incubation with the protein kinase C (PKC) antagonist staurosporine, but not withthe fatty acid-binding protein bovine serum albumin, prevented theET-1-induced decrease in the glutamate uptake. These results suggestthat ET-1 impairs the high-affinity glutamate uptake in culturedastrocytes through a G protein-coupled mechanism, involving PKC andchanges in intracellular Ca2+.

  相似文献   

16.
Or-Rashid MM  Onodera R  Wadud S 《Amino acids》2003,24(1-2):135-139
Summary.  An in vitro experiment was conducted to test the ability of mixed rumen bacteria (B), protozoa (P), and their mixture (BP) to utilize the oxidized forms of methionine (Met) e.g., methionine sulfoxide (MSO), methionine sulfone (MSO2). Rumen contents were collected from fistulated goats to prepare the microbial suspensions and were anaerobically incubated at 39°C for 12 h with or without MSO (1 mM) or MSO2 (1 mM) as a substrate. Met and other related compounds produced in both the supernatants and hydrolyzates of the incubation were analyzed by HPLC. During 6- and 12-h incubation periods, MSO disappeared by 28.3 and 42.0%, 0.0 and 0.0%, and 40.6 and 62.4% in B, P, and BP suspensions, respectively. Rumen bacteria and the mixture of rumen bacteria and protozoa were capable to reduce MSO to Met, and the production of Met from MSO in BP (156.6 and 196.1 μmol/g MN) was about 17.3 and 14.1% higher than that in B alone (133.5 and 171.9 μmol/g MN) during 6- and 12-h incubations, respectively. On the other hand, mixed rumen protozoa were unable to utilize MSO. Other metabolites produced from MSO were found to be MSO2 and 2-aminobutyric acid (2AB) in B and BP. MSO2 as a substrate remained without diminution in all-microbial suspensions. It was concluded that B, P, and BP cannot utilize MSO2; but MSO can be utilized by B and BP for producing Met. Received December 28, 2001 Accepted May 21, 2002 Published online October 14, 2002 Acknowledgements The authors are extremely grateful to Professor H. Ogawa, the University of Tokyo, Japan and Dr. Takashi Hasegawa, Miyazaki University, Japan for inserting permanent rumen fistulae in goats. We would like to thank MONBUSHO for the award of a research scholarship to Mamun M. Or-Rashid since 1996–2001. Authors' address: Shaila Wadud, Laboratory of Animal Nutrition and Biochemistry, Division of Animal Science, Miyazaki University, Miyazaki 889-2192, Japan, Fax. +81-985-58-7201, E-mail: rafatkun@hotmail.com  相似文献   

17.
Astrocyte and glial-neuron interactions have a critical role in brain development, which is partially mediated by glycoproteins, including adhesion molecules and growth factors. Ethanol affects the synthesis, intracellular transport, subcellular distribution and secretion of these glycoproteins, suggesting alterations in glycosylation. We analyzed the effect of long-term exposure to low doses of ethanol (30 mm) on glycosylation process in growing cultured astrocytes in vitro. Cells were incubated for short (5 min) and long (90 min) periods with several radioactively labeled carbohydrate precursors. The uptake, kinetics and metabolism of these precursors, as well as the radioactivity distribution in protein gels were analyzed. The levels of GLUT1 and mannosidase II were also determined. Ethanol increased the uptake of monosaccharides and the protein levels of GLUT1 but decreased those of mannosidase II. It altered the carbohydrate moiety of proteins and increased cell surface glycoproteins containing terminal non-reduced mannose. These results indicate that ethanol impairs glycosylation in rat astrocytes, thus disrupting brain development.  相似文献   

18.
Recent advances in brain energy metabolism support the notion that glycogen in astrocytes is necessary for the clearance of neuronally-released K+ from the extracellular space. However, how the multiple metabolic pathways involved in K+-induced increase in glycogen turnover are regulated is only partly understood. Here we summarize the current knowledge about the mechanisms that control glycogen metabolism during enhanced K+ uptake. We also describe the action of the ubiquitous Na+/K+ ATPase for both ion transport and intracellular signaling cascades, and emphasize its importance in understanding the complex relation between glycogenolysis and K+ uptake.  相似文献   

19.
Effect of ammonia on GABA uptake and release in cultured astrocytes   总被引:3,自引:0,他引:3  
While the pathogenesis of hepatic encephalopathy (HE) is unclear, there is evidence of enhanced GABAergic neurotransmission in this condition. Ammonia is believed to play a major pathogenetic role in HE. To determine whether ammonia might contribute to abnormalities in GABAergic neurotransmission, its effects on GABA uptake and release were studied in cultured astrocytes, cells that appear to be targets of ammonia neurotoxicity. Acutely, ammonium chloride (5 mM) inhibited GABA uptake by 30%, and by 50-60% after 4-day treatment. GABA uptake inhibition was associated with a predominant decrease in Vmax; the Km was also decreased. Ammonia also enhanced GABA release after 4-day treatment, although such release was initially inhibited. These effects of ammonia (inhibition of GABA uptake and enhanced GABA release) may elevate extracellular levels of GABA and contribute to a dysfunction of GABAergic neurotransmission in HE and other hyperammonemic states.  相似文献   

20.
Kinetics for uptake and release of glutamate were measured in normal, i.e., nontransformed, astrocytes in cultures obtained from the dissociated, cortexenriched superficial parts of the brain hemispheres of newborn DBA mice. The uptake kinetics indicated a minor, unsaturable component together with an intense uptake following Michaelis-Menten kinetics. TheK m (50 M) was reasonably comparable to the corresponding values in brain slices and in other glial preparations. TheV max (58.8 nmol min–1 mg–1 protein) was, however, much higher than that observed in glial cell lines or peripheral satellite cells, and also considerably higher than that generally reported for brain slices. The release of glutamate was much smaller than the uptake, and only little affected by an increase of the external glutamate concentration, suggesting a net accumulation of glutamate rather than a homoexchange. Such an intense accumulation of glutamate into normal astrocytes may play a major role in brain metabolism and may help keep the extracellular glutamate cohcentration below excitatory levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号