首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focused on the interactions between yeast and zinc in relation to beer fermentations. Yeast accumulation of zinc from growth media, including malt wort, was found to be rapid following inoculation with a brewing strain of Saccharomyces carlsbergensis. In contrast, at the onset of the fermentation, the uptake of other divalent cations such as magnesium and calcium was not as pronounced compared with zinc. At the end of fermentation, both growth media and yeast cells became zinc-depleted, the latter due to dilution of zinc to daughter cells following growth and cell division. In addition, in brewing fermenters, the levels of intracellular zinc were much higher in suspended yeast cells compared with cells that sedimented in the yeast cone at the end of fermentation. This may result in impaired yeast performance in subsequent fermentations if yeast is recycled into low zinc media and if the sub-population is composed by zinc-depleted daughter cells. Cellular uptake of zinc was mediated by a metabolism-dependent mechanism as evidenced by impaired uptake following heat shock. Zinc was thereafter localised in the yeast cell vacuole. As industrial fermentation processes may occasionally be suppressed due to zinc deficiencies, the findings of this study are pertinent for several yeast-based industries, especially beer production.  相似文献   

2.
The growth phase of a bacterial (Salmonella typhimurium) culture was shown to have pronounced effects on the pathogenic properties of the harvested bacteria. Salmonellae obtained from a culture in primary (exponential) growth phase (PP) were more readily cleared from the blood and more readily killed by phagocytes than were salmonellae obtained from a more slowly growing secondary growth phase (SP) culture. PP salmonellae were observed to cause death of mice sooner than SP salmonellae. This appeared to be because the more rapid growth of PP, as compared to SP, salmonellae continued in the liver and spleen for several hours following intravenous injection, and more than compensated for their high in vivo death rate. As a result, within 4 h there were approximately 10-fold more live salmonellae in the spleens and livers of mice that had received PP, as compared to SP, salmonellae. This 10-fold difference was maintained until the death of the mice, indicating that after the first 4 h post-inoculation, the net in vivo growth of the salmonellae was the same regardless of their growth phase in the inoculating culture. This transition between PP and SP salmonellae occurred long before a dense stationary phase culture was obtained. Salmonellae grown in minimal media exhibited the biological properties of SP salmonellae and never entered as rapid a growth phase as did salmonellae in complete media.  相似文献   

3.
The effect of glutamine depletion on the death of attached Chinese hamster ovary (CHO) cells was investigated. Experiments were performed using an anchorage dependent CHO cell line expressing gamma-IFN and a second cell line obtained by transfection of that cell line with the human bcl-2 (hbcl-2). Either cell line could grow in media devoid of glutamine with minimal cell death due to endogenous glutamine synthetase activity that allowed cells to synthesize glutamine from glutamic acid in the medium. However, compared to control cultures in glutamine-containing media, the cell growth rate in glutamine-free media was slower with an increased fraction of cells distributed in the G0/G1 phase. The slower rate of cell cycling apparently protected the cells from entering apoptosis when they were stimulated to proliferate in an environment devoid of other protective factors, such as serum or over-expressed hbcl-2. The depletion of both glutamine and glutamic acid did cause cell death, which could be mitigated by hbcl-2 over-expression.  相似文献   

4.
【背景】嗜盐古菌可以在盐沉积物中存活长达几百万年,是著名的长寿菌。许多嗜盐古菌分泌胞外蛋白酶,大多数分泌的胞外蛋白酶被称为Halolysin,具有以下特征:属于枯草杆菌蛋白酶类蛋白酶;在胞内折叠后经Tat途径高效分泌至胞外;可自加工形成成熟酶;尤其在天然宿主中大多数Halolysin在对数生长后期表达并在稳定期达到最高水平。目前Halolysin的酶学性质、加工成熟及分泌机制已被广泛研究,然而其生理功能的研究较少。Halolysin SptA是嗜盐古菌Natrinema sp.J7-2的主要胞外蛋白酶,前期研究发现多个顺式调控元件协同调节SptA的生长期依赖性表达,使SptA参与J7-2菌株不同生长期之间的转变,而且在衰亡期之后SptA有助于J7-2菌株继续生存。【目的】研究Halolysin SptA对Natrinema sp.J7-2长期生存的作用。【方法】将J7-2菌株和突变体ΔsptA1分别在寡营养、无外源营养物质(液体)及营养丰富(固体)条件下长期培养,通过比较二者的生长、生存和SptA的表达分泌情况进一步探讨SptA的作用。【结果】J7-2菌株在寡营养条件下产生更多SptA,培养后期(33 d) J7-2菌株活细胞数显著高于ΔsptA1。在无外源营养物质情况下长期温育,J7-2菌株和ΔsptA1经历多次细胞分裂和细胞死亡,在延长温育期间(73—200 d)存活的J7-2菌株细胞数量均显著多于存活的ΔsptA1细胞数量。在营养丰富的固体平板上培养的后期(160 d),由于营养物质消耗,J7-2菌株通过SptA吸收和利用来源于死细胞蛋白的降解产物,帮助其群体长期生存。【结论】SptA介导的细胞死亡和死细胞蛋白降解,促进J7-2菌株利用来源于死细胞的营养物质,从而有助于菌株群体在营养缺乏条件下长期存活。本研究提供了关于Halolysin生理作用的新见解。  相似文献   

5.
Biodegradation of chlorophenol mixtures by Pseudomonas putida   总被引:1,自引:0,他引:1  
The dynamic growth behavior of Pseudomonas putida has been studied when resting calls were inoculated into a growth medium containing inhibitory concentrations of mixtures of phenol and monochlorophenols. Resting cells inoculated into single carbon substrate media did not demonstrate enhanced cell lysis by any of the phenol substrates. The apprarent death rate was reduced as the concentrations of phenol or chlorophenols were increased. This behavior was modeled by employing a constant specific death rate (k(d) = 0.0075 h(-1)) and assuming all organic species result in a lag-phase, specific growth rate which may be larger or smaller than k(d).Logarithmic biomass growth on pure monochlorophenols did not occur within 2 weeks after inoculation. Logarithmic growth phases were only observed when the monochlorophenols were cometabolized with phenol. The delay time over which the lag phase exists increased exponentially with phenol concentration and linearly with monochlorophenol concentration. The log growth yield coefficient decreased linearly with monochlorophenol concentration.The lag-phase, specific growth rate was found to decrease exponentially with the concentration of monochlorophenols. This resulted in a 50% lag growth rate inhibition for both 3- and 4-chlorophenol of 9 ppm and for 2-chlorophenol of only 2 ppm. The new, empirical correlations are shown to closely model the complete lag and log growth behavior ot P. putida on phenol and chlorophenol mixtures. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
Abstract Most brewing strains of Saccharomyces cerevisiae flocculate following growth in beer wort. However, many do not flocculate in laboratory culture media, because their initial pH and buffering capacity do not correspond to the pH range within which these yeasts flocculate. Many, though not all, NewFlo phenotype brewing yeasts flocculate within a narrow pH range only; this is indicative of the existence of more than one NewFlo flocculation phenotype. Such strains may be flocculated by small alterations of pH to within the flocculation range. Induction of flocculation by pH change may be used to separate cells from media at any stage during fermentation.  相似文献   

7.
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.  相似文献   

8.
The influence of the growth medium and the growth temperature on the heat resistance of Citrobacter freundii has been established. Logarithmic growth phase cells grown on rich media have a higher heat resistance than cells of the same phase grown on minimal media. This finding was independent of type of carbon source in the growth medium, but the kind of carbon source has a definite influence on the heat resistance. Logarithmic phase cells grown at 37°C are much more heat stable than cells grown at 20 or 41°C. Stationary growth phase cells are much more heat resistant than logarithmic phase cells, whereas Mg2+-or glucose-starved cells are even slightly more heat stable than stationary phase cells.  相似文献   

9.
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.  相似文献   

10.
Secondary metabolites such as antibiotics are typically produced by actinomycetes as a response to growth limiting stress conditions. Several studies have shown that secondary metabolite production is correlated with changes observed in actinomycete pellet morphology. Therefore, we investigated the correlation between the production of balhimycin and the spatio-temporal distribution of live and dead cells in pellets of Amycolatopsis balhimycina in submerged cultures. To this end, we used laser scanning confocal microscopy to analyze pellets from balhimycin producing and nonproducing media containing 0.2 and 1.0 g l?1 of potassium di-hydrogen phosphate, respectively. We observed a substantially higher fraction of live cells in pellets from cultures yielding larger amounts of balhimycin. Moreover, in media that resulted in no balhimycin production, the pellets exhibit an initial death phase which commences from the centre of the pellet and extends in the radial direction. A second growth phase was observed in these pellets, where live mycelia are seen to appear in the dead core of the pellets. This secondary growth was absent in pellets from media producing higher amounts of balhimycin. These results suggest that distribution of live and dead cells and its correlation with antibiotic production in the non-sporulating A. balhimycina differs markedly than that observed in Streptomycetes.  相似文献   

11.
L-Glutamate decarboxylase (GAD) activity of Clostridium perfringens (ATCC 8009) cells grown in various culture conditions was investigated. Remarkable variations of GAD level occur during the growth cycle in thioglycollate broth. These changes are affected by the pH of the culture medium. Addition of alkali to the culture media results in decrease of cell GAD activity, whereas increase of enzyme level occurs only in cells growing in unbuffered media. The results indicate that the mechanism regulating the GAD levels is sensitive to the changes of pH (or buffering substances) rather than to the steady pH values. Neither repression by glucose nor induction by L-glutamate was observed. Moreover, high concentrations of the free amino acid substrate in the culture media considerably decrease cell GAD activity, owing to the buffering effect of the amino acid. The molecular mechanism supporting the variations of GAD activity during the growth cycle of the cells were investigated and tentatively related to the structural and functional properties of the pure enzyme. It is shown that the drop of GAD activity during the lag phase is due to protein breakdown. Evidence is presented suggesting a control of protein degradation by its quaternary structure. Data are also reported supporting de novo synthesis of GAD during the late logarithmic phase of cell growth. Finally, the possible role of GAD as part of the pH regulation system of C. perfringens cells is discussed in relation both to physiologic conditions of the bacterial cell and to the molecular mechanisms regulating the GAD activity in vivo.  相似文献   

12.
J A McLane  J M Pawelek 《Biochemistry》1988,27(10):3743-3747
Cloudman S91 mouse melanoma cells respond in culture to B-melanocyte-stimulating hormone (B-MSH) with changes in morphology, growth rates, and melanin production. The effects of MSH appear to be mediated through a stimulation of the cyclic AMP system. It was reported earlier that at least some of the responses to MSH (increased cyclic AMP production and tyrosinase activity) occur in the G2 phase of the cell cycle [Wong, G., Pawelek, J., Sansone, M., & Morowitz, J. (1974) Nature (London) 248, 351-354] and that the apparent reason for this cell cycle restriction is that receptors for MSH are most active in the G2 phase [Varga, J. M., DiPasquale, A., Pawelek, J., McGuire, J., & Lerner, A. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 1590-1593]. In this report, we found that by two separate methods of obtaining populations of cells in the G2 phase of their cycle--centrifugal elutriation or synchronization with thymidine--we observed increased binding of MSH by cells in the G2 and possibly late S phases of their cycle. However, cultures of cells passing through their cycle in synchrony were quite different from nonsynchronized (random) cultures. Both synchronized and random cultures expressed receptors for MSH in the G2 and possibly late S phases of their cycle, but synchronized cultures bound severalfold more MSH per cell than random cultures. This increased binding of MSH by synchronized cells was accompanied by an increase in tyrosinase activity and pigment production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A murine hybridoma cell line (167.4G5.3) was cultured in batch mode using IMDM containing different serum concentrations and bovine serum albumin (BSA). Cell growth and death, metabolism and antibody production were studied in these cultures. The cells were more susceptible to shear in the stationary and in the decline phase of growth as evidenced by higher death rates. Cell growth was best at high serum concentrations with high specific growth and low specific death rates. When BSA was used instead of serum in IMDM, no protective effect was observed. Cell metabolism and monoclonal antibody production rates were not influenced by the level of serum or by BSA. The use of serum in commercial serum-free media (OPTI-MEM) also resulted in no change in both growth and death rates.  相似文献   

14.
Razin, Shmuel (University of Connecticut, Storrs), and Benjamin J. Cosenza. Growth phases of Mycoplasma in liquid media observed with phase-contrast microscope. J. Bacteriol. 91:858-869. 1966-Growth of 11 Mycoplasma strains in liquid media was followed by phase-contrast microscopy. A similar pattern of development was common to all strains. Branching filaments, 0.3 to 0.4 mu thick, characterized the early logarithmic phase of growth. The length of the filaments varied according to the strain tested and the growth medium. Addition of oleic acid to the medium induced the formation of very long filaments by M. laidlawii strain B. Upon aging, the filaments were found to break up into chains of coccoid elements. These chains further fragmented to yield shorter chains and single coccoid elements, which characterized the stationary and decline phases of growth. The size of the coccoid elements increased from 0.3 to 0.4 mu, when formed in the filaments, to 0.6 to 0.8 mu after being released from the chains. Further increase in the size of the cells took place at the decline phase of growth, leading to the formation of very large cells reaching a diameter of 10 to 20 mu. However, these large cells had the appearance of empty vesicles and were apparently nonviable as indicated by viable-count experiments.  相似文献   

15.
A novel feeding strategy in fedbatch recombinant yeast fermentation was developed to achieve high plasmid stability and protein productivity for fermentation using low-cost rich (non-selective) media. In batch fermentations with a recombinant yeast, Saccharomyces cerevisiae, which carried the plasmid pSXR125 for the production of beta-galactosidase, it was found that the fraction of plasmid-carrying cells decreased during the exponential growth phase but increased during the stationary phase. This fraction increase in the stationary phase was attributed to the death rate difference between the plasmid-free and plasmid-carrying cells caused by glucose starvation in the stationary phase. Plasmid-free cells grew faster than plasmid-carrying cells when there were plenty of growth substrate, but they also lysed or died faster upon the depletion of the growth substrate. Thus, pulse additions of the growth substrate (glucose) at appropriate time intervals allowing for significant starvation period between two consecutive feedings during fedbatch fermentation should have positive effects on stabilizing plasmid and enhancing protein production. A selective medium was used to grow cells in the initial batch fermentation, which was then followed with pulse feeding of concentrated non-selective media in fedbatch fermentation. Both experimental data and model simulation show that the periodic glucose starvation feeding strategy can maintain a stable plasmid-carrying cell fraction and a stable specific productivity of the recombinant protein, even with a non-selective medium feed for a long operation period. On the contrary, without glucose starvation, the fraction of plasmid-carrying cells and the specific productivity continue to drop during the fedbatch fermentation, which would greatly reduce the product yield and limit the duration that the fermentation can be effectively operated. The new feeding strategy would allow the economic use of a rich, non-selective medium in high cell density recombinant fedbatch fermentation. This new feeding strategy can be easily implemented with a simple IBM-PC based control system, which monitors either glucose or cell concentration in the fermentation broth.  相似文献   

16.
Derepressed cells of Saccharomyces mellis were treated in one of several different ways to either elute or inactivate the exocellular enzyme, acid phosphatase. The enzyme was either (i) eluted from resting cells with 0.5 m KCl plus 0.1% beta-mercaptoethanol, (ii) eluted from exponential phase cells by growing the organism in derepressing media containing 0.5 m KCl, or (iii) inactivated on exponential phase cells by adding sufficient acid or base to growth media to destroy the enzyme but not enough to kill the cells. These treatments did not affect viability. Treated cells were transferred to fresh growth media or some other reaction mixture, and the kinetics of recovery of acid phosphatase activity was studied. In these reaction mixtures, enzyme was synthesized only by actively growing cells. Treated resting cells were indistinguishable from untreated, repressed resting cells in that the organism inoculated into complete growth medium remained in the lag phase for approximately 6 hr before both growth and enzyme synthesis began. Exponential phase derepressed cells treated by method (ii) or (iii) were transferred to fresh medium under conditions that allowed growth to continue. The cells immediately started to manufacture enzyme at a rate greater than normal until the steady-state level was reached, thus demonstrating a feedback control system. Exponential phase repressed cells were also transferred to fresh derepressing media under conditions which sustained growth. Though these cells began to grow immediately, there was a lag before acid phosphatase synthesis began followed by a lengthy inductive period. The length of the period of induction could be correlated with the polyphosphate content of the cells. As the supply of polyphosphate neared exhaustion, the rate of synthesis increased rapidly until it was greater than normal; this differential rate was sustained until the steady-state concentration was reached. When derepressed cells grow in a medium containing 0.5 m KCl, some acid phosphatase activity is found free in the culture fluid and some remains firmly attached to the cells despite the presence of the salt. The bound activity is subject to feedback control, but the steady-state level of this activity on the cells is only one-third that of the acid phosphatase on cells growing in nonsaline media. The extracellular phosphatase is produced at a rate that is several-fold greater than that of the exocellular enzyme in a nonsaline medium. The synthesis of the extracellular enzyme does not seem to be controlled by a feedback mechanism but is produced at a maximal rate as long as the cells are growing.  相似文献   

17.
When the growth rate of the yeast Saccharomyces cerevisiae is limited with various nitrogen sources, the duration of the S phase is proportional to cell cycle length over a fourfold range of growth rates (C.J. Rivin and W. L. Fangman, 1980, J. Cell Biol. 85:96-107). Molecular parameters of the S phases of these cells were examined by DNA fiber autoradiography. Changes in replication fork rate account completely for the changes in S-phase duration. No changes in origin-to- origin distances were detected. In addition, it was found that while most adjacent replication origins are activated within a few minutes of each other, new activations occur throughout the S phase.  相似文献   

18.
The growth of thermosensitive Bacillus subtilis lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants (lysS1 and trypS1) (l-lysine:transfer ribonucleic acid [tRNA] ligase [AMP], EC 6.1.1.6; and l-tryptophan:tRNA ligase [AMP], EC 6.1.1.2) was terminated when exponential phase cells were shifted from 30 to 43 C in a rich medium. Under these conditions, the temperature-inhibited cells undergo thermal death; they rapidly lose their ability to form colonies at 30 C. Another lysyl-tRNA synthetase mutant (lysS2) is refractory to thermal death even though its growth is inhibited at 43 C. The thermal death response of the lysS1 mutant is affected by the stage of cell development. At periods in spore outgrowth and sporogenesis these cells become refractory to thermal death. The refractory state does not result from the production of an inhibitor, or from the degradation of an activator of thermal death. However, culture medium composition does modify the thermal death response. Rich media enhance the effect, and no thermal death occurs in the lysS1 strain grown in a minimal medium. Temperature-sensitive cells can grow in a lysine- (0.25 mM) or tryptophan- (0.25 mM) supplemented minimal medium at 43 C, but amino acid concentrations of 25 mM only transiently protect trypS1 and lysS1 cells from thermal death in a rich medium. Osmotic agents such as sucrose (0.5 M) and NaCl (0.34 M) completely prevent thermal death in the lysS1 strain, although growth is still arrested. On solid media, sucrose stabilized lysS1 cells can form colonies at the restrictive temperature, but neither sucrose (0.5 M) nor NaCl (0.34 M) stabilized the lysS1 enzyme in vitro. Chloramiphenicol increased the rate of thermal death of the lysS1 strain but decreased the thermal death response of the trypS1 mutant. Considering the nature of the enzyme defect in the lysS1 strain, the common genetic origin of the spore and vegetative lysyl-tRNA synthetase, and the protective effects exerted by lysine and osmotic agents, it is tentatively concluded that thermal death results from irreversible inactivation of the mutant gene product. According to this hypothesis, either the lysS1 enzyme is altered during sporogenesis or some physiological or structural aspect of this developmental phase can stabilize the mutant phenotype and thereby rescue cells from thermal death.  相似文献   

19.
Vibrio parahaemolyticus cells were injured by chilling and heating, and their recovery was tested in glucose-salt-Teepol broth (GSTB), tryptic soy broth containing 7% NaCl (TSBS), Horie - arabinose - ethyl violet broth (HAEB), and water blue - alizarin yellow broth (WBAY). Exponential phase cells were more sensitive to cold shock than were stationary phase cells. Exposure of chill-injured V. parahaemolyticus to GSTB and TSBS resulted in 70 to 80% death; about 70% lethality was noted for heat-injured cells inoculated into TSBS. Neither HAEB nor WBAY enrichment media were lethal to stressed cells, although rates of growth were retarded. The 3% NaCl in 0.1 M potassium phosphate (pH 7.0) diluent proved to be most suitable for protecting against inactivation of cold- and heat-injured cells.  相似文献   

20.
Changes in polyol production and the intracellular amino acid pool were followed during the growth cycle of Debaryomyces hansenii in 4 mM and 2.7 M NaCl media. The intracellular levels of polyols were markedly enhanced by high salinity, the dominant solutes being glycerol in log phase cells and arabinitol in stationary phase cells. At low salinity arabinitol was the most prominent intracellular solute throughout the growth cycle. There were no major changes in the composition of the total amino acid pool with changes in cultural salinity. The amount of total free amino acids related to cell dry weight was 15–50% lower in cells cultured in 2.7 M NaCl as compared to 4 mM NaCl media.After subtraction of contributions from intracellular polyols the calculated cellular C/N ratio was found to be unaffected by cultural age and salinity during the late log and early stationary phase. On prolonged incubation of stationary phase cells, this ratio decreased, particularly at high salinity. The sensitivity of cells towards exposure to high salinity was measured in terms of the length of the lag phase after transference to 2.7 M NaCl media. This lag phase decreased with increasing intracellular polyol concentrations. At a given polyol content, stationary phase cells were considerably less sensitive than were log phase cells.When cultured at high salinity the mutant strain, 26-2b, grew more slowly and retained less of the total polyol produced during the early growth stages than did the wildtype. Exogenously supplied mannitol, arabinitol, and glycerol stimulated the growth of the mutant in saline media. Erythritol was without effect.Abbreviations GLC gas-liquid chromatography - TCA trichloroacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号