首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. RESULTS: We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. AVAILABILITY: Dataset and stand-alone program are available upon request.  相似文献   

2.
In the era of structural genomics, it is necessary to generate accurate structural alignments in order to build good templates for homology modeling. Although a great number of structural alignment algorithms have been developed, most of them ignore intermolecular interactions during the alignment procedure. Therefore, structures in different oligomeric states are barely distinguishable, and it is very challenging to find correct alignment in coil regions. Here we present a novel approach to structural alignment using a clique finding algorithm and environmental information (SAUCE). In this approach, we build the alignment based on not only structural coordinate information but also realistic environmental information extracted from biological unit files provided by the Protein Data Bank (PDB). At first, we eliminate all environmentally unfavorable pairings of residues. Then we identify alignments in core regions via a maximal clique finding algorithm. Two extreme value distribution (EVD) form statistics have been developed to evaluate core region alignments. With an optional extension step, global alignment can be derived based on environment-based dynamic programming linking. We show that our method is able to differentiate three-dimensional structures in different oligomeric states, and is able to find flexible alignments between multidomain structures without predetermined hinge regions. The overall performance is also evaluated on a large scale by comparisons to current structural classification databases as well as to other alignment methods.  相似文献   

3.
The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.  相似文献   

4.
MOTIVATION: Recognizing proteins that have similar tertiary structure is the key step of template-based protein structure prediction methods. Traditionally, a variety of alignment methods are used to identify similar folds, based on sequence similarity and sequence-structure compatibility. Although these methods are complementary, their integration has not been thoroughly exploited. Statistical machine learning methods provide tools for integrating multiple features, but so far these methods have been used primarily for protein and fold classification, rather than addressing the retrieval problem of fold recognition-finding a proper template for a given query protein. RESULTS: Here we present a two-stage machine learning, information retrieval, approach to fold recognition. First, we use alignment methods to derive pairwise similarity features for query-template protein pairs. We also use global profile-profile alignments in combination with predicted secondary structure, relative solvent accessibility, contact map and beta-strand pairing to extract pairwise structural compatibility features. Second, we apply support vector machines to these features to predict the structural relevance (i.e. in the same fold or not) of the query-template pairs. For each query, the continuous relevance scores are used to rank the templates. The FOLDpro approach is modular, scalable and effective. Compared with 11 other fold recognition methods, FOLDpro yields the best results in almost all standard categories on a comprehensive benchmark dataset. Using predictions of the top-ranked template, the sensitivity is approximately 85, 56, and 27% at the family, superfamily and fold levels respectively. Using the 5 top-ranked templates, the sensitivity increases to 90, 70, and 48%.  相似文献   

5.
6.
The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 000 members through all kingdoms of life and share the same structural fold. GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence similarity is quite low between members of this superfamily even when substrates are similar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional annotation based on sequence similarity is unreliable and strongly hampered for thousands of GNAT members that remain biochemically uncharacterized. Here we used sequence similarity networks to map the sequence space and propose a new classification for eukaryotic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree, representing the entire GNAT acetyltransferase superfamily. Our results show that protein NATs have evolved more than once on the GNAT acetylation scaffold. We use our classification to predict the function of uncharacterized sequences and verify by in vitro protein assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal sequences, showing that even slight changes on the GNAT fold can lead to change in substrate specificity. In addition to providing a new map of the relationship between eukaryotic acetyltransferases the classification proposed constitutes a tool to improve functional annotation of GNAT acetyltransferases.  相似文献   

7.
To understand the molecular basis of glycosyltransferases' (GTFs) catalytic mechanism, extensive structural information is required. Here, fold recognition methods were employed to assign 3D protein shapes (folds) to the currently known GTF sequences, available in public databases such as GenBank and Swissprot. First, GTF sequences were retrieved and classified into clusters, based on sequence similarity only. Intracluster sequence similarity was chosen sufficiently high to ensure that the same fold is found within a given cluster. Then, a representative sequence from each cluster was selected to compose a subset of GTF sequences. The members of this reduced set were processed by three different fold recognition methods: 3D-PSSM, FUGUE, and GeneFold. Finally, the results from different fold recognition methods were analyzed and compared to sequence-similarity search methods (i.e., BLAST and PSI-BLAST). It was established that the folds of about 70% of all currently known GTF sequences can be confidently assigned by fold recognition methods, a value which is higher than the fold identification rate based on sequence comparison alone (48% for BLAST and 64% for PSI-BLAST). The identified folds were submitted to 3D clustering, and we found that most of the GTF sequences adopt the typical GTF A or GTF B folds. Our results indicate a lack of evidence that new GTF folds (i.e., folds other than GTF A and B) exist. Based on cases where fold identification was not possible, we suggest several sequences as the most promising targets for a structural genomics initiative focused on the GTF protein family.  相似文献   

8.
One of the major research directions in bioinformatics is that of predicting the protein superfamily in large databases and classifying a given set of protein domains into superfamilies. The classification reflects the structural, evolutionary and functional relatedness. These relationships are embodied in hierarchical classification such as Structural Classification of Protein (SCOP), which is manually curated. Such classification is essential for the structural and functional analysis of proteins. Yet, a large number of proteins remain unclassified. We have proposed an unsupervised machine-learning FuzzyART neural network algorithm to classify a given set of proteins into SCOP superfamilies. The proposed method is fast learning and uses an atypical non-linear pattern recognition technique. In this approach, we have constructed a similarity matrix from p-values of BLAST all-against-all, trained the network with FuzzyART unsupervised learning algorithm using the similarity matrix as input vectors and finally the trained network offers SCOP superfamily level classification. In this experiment, we have evaluated the performance of our method with existing techniques on six different datasets. We have shown that the trained network is able to classify a given similarity matrix of a set of sequences into SCOP superfamilies at high classification accuracy.  相似文献   

9.
Recognizing the structural similarity without significant sequence identity (fold recognition) is an effective method for protein structure prediction. Previously, we developed a fold recognition potential called SORDIS, which incorporated side chain orientation in relation to hydrophobic core centers, distance of the residues from the protein globule center and secondary structure terms. But this potential does not include terms, based on close contacts between residues. In this paper a new fold recognition potential CONTSOR was presented, which based on SORDIS terms and the term, based on contacts between amino acid terminal groups. The performance of this potential was evaluated on SABmark benchmark for alignment accuracy and on SABmark and Lindahl benchmarks for fold recognition. The results show that CONTSOR has the best performance among other potentials on SABmark benchmark both for alignment accuracy and fold recognition and one of the best performances on Lindahl benchmark. CONTSOR software package is available for download at http://www.lifescience.org.ge/downloads/contsor.zip.  相似文献   

10.
The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.  相似文献   

11.
Brakoulias A  Jackson RM 《Proteins》2004,56(2):250-260
A method is described for the rapid comparison of protein binding sites using geometric matching to detect similar three-dimensional structure. The geometric matching detects common atomic features through identification of the maximum common sub-graph or clique. These features are not necessarily evident from sequence or from global structural similarity giving additional insight into molecular recognition not evident from current sequence or structural classification schemes. Here we use the method to produce an all-against-all comparison of phosphate binding sites in a number of different nucleotide phosphate-binding proteins. The similarity search is combined with clustering of similar sites to allow a preliminary structural classification. Clustering by site similarity produces a classification of binding sites for the 476 representative local environments producing ten main clusters representing half of the representative environments. The similarities make sense in terms of both structural and functional classification schemes. The ten main clusters represent a very limited number of unique structural binding motifs for phosphate. These are the structural P-loop, di-nucleotide binding motif [FAD/NAD(P)-binding and Rossman-like fold] and FAD-binding motif. Similar classification schemes for nucleotide binding proteins have also been arrived at independently by others using different methods.  相似文献   

12.
MOTIVATION: It is understood that clustering genes are useful for exploring scientific knowledge from DNA microarray gene expression data. The explored knowledge can be finally used for annotating biological function for novel genes. Representing the explored knowledge in an efficient manner is then closely related to the classification accuracy. However, this issue has not yet been paid the attention it deserves. RESULT: A novel method based on template theory in cognitive psychology and pattern recognition is developed in this study for representing knowledge extracted from cluster analysis effectively. The basic principle is to represent knowledge according to the relationship between genes and a found cluster structure. Based on this novel knowledge representation method, a pattern recognition algorithm (the decision tree algorithm C4.5) is then used to construct a classifier for annotating biological functions of novel genes. The experiments on five published datasets show that this method has improved the classification performance compared with the conventional method. The statistical tests indicate that this improvement is significant. AVAILABILITY: The software package can be obtained upon request from the author.  相似文献   

13.
Hu Y  Dong X  Wu A  Cao Y  Tian L  Jiang T 《PloS one》2011,6(2):e17215
Fold recognition, or threading, is a popular protein structure modeling approach that uses known structure templates to build structures for those of unknown. The key to the success of fold recognition methods lies in the proper integration of sequence, physiochemical and structural information. Here we introduce another type of information, local structural preference potentials of 3-residue and 9-residue fragments, for fold recognition. By combining the two local structural preference potentials with the widely used sequence profile, secondary structure information and hydrophobic score, we have developed a new threading method called FR-t5 (fold recognition by use of 5 terms). In benchmark testings, we have found the consideration of local structural preference potentials in FR-t5 not only greatly enhances the alignment accuracy and recognition sensitivity, but also significantly improves the quality of prediction models.  相似文献   

14.
Identifying the fold class of a protein sequence of unknown structure is a fundamental problem in modern biology. We apply a supervised learning algorithm to the classification of protein sequences with low sequence identity from a library of 174 structural classes created with the Combinatorial Extension structural alignment methodology. A class of rules is considered that assigns test sequences to structural classes based on the closest match of an amino acid index profile of the test sequence to a profile centroid for each class. A mathematical optimization procedure is applied to determine an amino acid index of maximal structural discriminatory power by maximizing the ratio of between-class to within-class profile variation. The optimal index is computed as the solution to a generalized eigenvalue problem, and its performance for fold classification is compared to that of other published indices. The optimal index has significantly more structural discriminatory power than all currently known indices, including average surrounding hydrophobicity, which it most closely resembles. It demonstrates >70% classification accuracy over all folds and nearly 100% accuracy on several folds with distinctive conserved structural features. Finally, there is a compelling universality to the optimal index in that it does not appear to depend strongly on the specific structural classes used in its computation.  相似文献   

15.
Does a protein's secondary structure determine its three-dimensional fold? This question is tested directly by analyzing proteins of known structure and constructing a taxonomy based solely on secondary structure. The taxonomy is generated automatically, and it takes the form of a tree in which proteins with similar secondary structure occupy neighboring leaves. Our tree is largely in agreement with results from the structural classification of proteins (SCOP), a multidimensional classification based on homologous sequences, full three-dimensional structure, information about chemistry and evolution, and human judgment. Our findings suggest a simple mechanism of protein evolution.  相似文献   

16.
MOTIVATION: What constitutes a baseline level of success for protein fold recognition methods? As fold recognition benchmarks are often presented without any thought to the results that might be expected from a purely random set of predictions, an analysis of fold recognition baselines is long overdue. Given varying amounts of basic information about a protein-ranging from the length of the sequence to a knowledge of its secondary structure-to what extent can the fold be determined by intelligent guesswork? Can simple methods that make use of secondary structure information assign folds more accurately than purely random methods and could these methods be used to construct viable hierarchical classifications? EXPERIMENTS PERFORMED: A number of rapid automatic methods which score similarities between protein domains were devised and tested. These methods ranged from those that incorporated no secondary structure information, such as measuring absolute differences in sequence lengths, to more complex alignments of secondary structure elements. Each method was assessed for accuracy by comparison with the Class Architecture Topology Homology (CATH) classification. Methods were rated against both a random baseline fold assignment method as a lower control and FSSP as an upper control. Similarity trees were constructed in order to evaluate the accuracy of optimum methods at producing a classification of structure. RESULTS: Using a rigorous comparison of methods with CATH, the random fold assignment method set a lower baseline of 11% true positives allowing for 3% false positives and FSSP set an upper benchmark of 47% true positives at 3% false positives. The optimum secondary structure alignment method used here achieved 27% true positives at 3% false positives. Using a less rigorous Critical Assessment of Structure Prediction (CASP)-like sensitivity measurement the random assignment achieved 6%, FSSP-59% and the optimum secondary structure alignment method-32%. Similarity trees produced by the optimum method illustrate that these methods cannot be used alone to produce a viable protein structural classification system. CONCLUSIONS: Simple methods that use perfect secondary structure information to assign folds cannot produce an accurate protein taxonomy, however they do provide useful baselines for fold recognition. In terms of a typical CASP assessment our results suggest that approximately 6% of targets with folds in the databases could be assigned correctly by randomly guessing, and as many as 32% could be recognised by trivial secondary structure comparison methods, given knowledge of their correct secondary structures.  相似文献   

17.
18.
Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.  相似文献   

19.
Novotny M  Madsen D  Kleywegt GJ 《Proteins》2004,54(2):260-270
When a new protein structure has been determined, comparison with the database of known structures enables classification of its fold as new or belonging to a known class of proteins. This in turn may provide clues about the function of the protein. A large number of fold comparison programs have been developed, but they have never been subjected to a comprehensive and critical comparative analysis. Here we describe an evaluation of 11 publicly available, Web-based servers for automatic fold comparison. Both their functionality (e.g., user interface, presentation, and annotation of results) and their performance (i.e., how well established structural similarities are recognized) were assessed. The servers were subjected to a battery of performance tests covering a broad spectrum of folds as well as special cases, such as multidomain proteins, Calpha-only models, new folds, and NMR-based models. The CATH structural classification system was used as a reference. These tests revealed the strong and weak sides of each server. On the whole, CE, DALI, MATRAS, and VAST showed the best performance, but none of the servers achieved a 100% success rate. Where no structurally similar proteins are found by any individual server, it is recommended to try one or two other servers before any conclusions concerning the novelty of a fold are put on paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号