首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
In exponentially growing 3T6 cells, the synthesis of deoxythymidine triphosphate (dTTP) is balanced by its utilization for DNA replication, with a turnover of the dTTP pool of around 5 min. We now investigate the effects of two inhibitors of DNA synthesis (aphidicolin and hydroxyurea) on the synthesis and degradation of pyrimidine deoxynucleoside triphosphates (dNTPs). Complete inhibition of DNA replication with aphidicolin did not decrease the turnover of pyrimidine dNTP pools labeled from the corresponding [3H]deoxynucleosides, only partially inhibited the in situ activity of thymidylate synthetase and resulted in excretion into the medium of thymidine derived from breakdown of dTTP synthesized de novo. These data demonstrate continued synthesis of dTTP in the absence of DNA replication. In contrast, hydroxyurea decreased the turnover of pyrimidine dNTP pools 5-50-fold. Hydroxyurea is an inhibitor of ribonucleotide reductase and stops DNA synthesis by depleting cells of purine dNTPs but not pyrimidine dNTPs. Our results suggest that degradation of dNTPs is turned off by an unknown mechanism when de novo synthesis is blocked.  相似文献   

2.
In non-proliferating cells mitochondrial (mt) thymidine kinase (TK2) salvages thymidine derived from the extracellular milieu for the synthesis of mt dTTP. TK2 is a synthetic enzyme in a network of cytosolic and mt proteins with either synthetic or catabolic functions regulating the dTTP pool. In proliferating cultured cells the canonical cytosolic ribonucleotide reductase (R1-R2) is the prominent synthetic enzyme that by de novo synthesis provides most of dTTP for mt DNA replication. In non-proliferating cells p53R2 substitutes for R2. Catabolic enzymes safeguard the size of the dTTP pool: thymidine phosphorylase by degradation of thymidine and deoxyribonucleotidases by degradation of dTMP. Genetic deficiencies in three of the participants in the network, TK2, p53R2, or thymidine phosphorylase, result in severe mt DNA pathologies. Here we demonstrate the interdependence of the different enzymes of the network. We quantify changes in the size and turnover of the dTTP pool after inhibition of TK2 by RNA interference, of p53R2 with hydroxyurea, and of thymidine phosphorylase with 5-bromouracil. In proliferating cells the de novo pathway dominates, supporting large cytosolic and mt dTTP pools, whereas TK2 is dispensable, even in cells lacking the cytosolic thymidine kinase. In non-proliferating cells the small dTTP pools depend on the activities of both R1-p53R2 and TK2. The activity of TK2 is curbed by thymidine phosphorylase, which degrades thymidine in the cytoplasm, thus limiting the availability of thymidine for phosphorylation by TK2 in mitochondria. The dTTP pool shows an exquisite sensitivity to variations of thymidine concentrations at the nanomolar level.  相似文献   

3.
Deoxyribonucleoside triphosphate pools in uninfected and herpes simplex virus type 1 (HSV-1)- and HSV-2-infected KB cells were analyzed to determine whether ribonucleotide reductase functions in vivo in the presence and absence of thymidine (TdR). Previously we showed that HSV-2 replication was inhibited in KB cells blocked in their capacity to synthesize DNA by TdR. HSV-1 replication was not inhibited under these conditions. Both HSV-1 and HSV-2 induced an altered ribonucleotide reductase resistant to dTTP inhibition. Thus, the block to HSV-2 replication apparently was not at the level of reductase. However, the in vitro activity of the enzyme does not necessarily correspond to intracellular conditions. In TdR-blocked HSV-2-infected cells, we found that, while dTTP levels remained high, dCTP concentrations increased. In contrast, KB cells blocked by TdR showed increased dTTP but decreased dCTP levels. We conclude that the HSV-2 enzyme is functional in vivo and that TdR inhibits viral replication by a mechanism other than depletion of dCTP. Infection of KB cells with HSV-1 or HSV-2 altered both dATP and dGTP levels in the presence or absence of TdR. Inhibition of viral replication was not explained by changes in these pools. We suggest that, during infection, HSV-1 induces a virus function(s) not related to reductase which is resistant to TdR, whereas the corresponding HSV-2 function is sensitive. Our evidence shows that the TdR-sensitive function is not in the pathways leading to deoxyribonucleoside triphosphate and may occur at the level of DNA replication.  相似文献   

4.
ATP:AMP phosphotransferase from baker''s yeast. Purification and properties   总被引:2,自引:0,他引:2  
Synchronous cells of the green alga, Scenedesmus obliquus, cultured in a 14-h/10-h light/dark regime, contain a peak of ribonucleoside-diphosphate reductase activity and maximum deoxyribonucleoside 5'-triphosphate concentrations at the 12th hour of the cell cycle, coinciding with DNA synthesis and preceding the formation of eight daughter cells. The intracellular dTTP pool reaches 4.5 pmol and the other pools 2-3 pmol/10(6) cells. Algal reductase activity is sensitive to cycloheximide, but not to lincomycin. These correlations demonstrate the functioning of the NDP leads to dNDP leads to dNTP pathway of DNA precursor biosynthesis in plant cells. In the presence of 20 micrograms 5-fluorodeoxyuridine/ml, an inhibitor of thymidylate synthesis, the dTTP pool is rapidly depleted and DNA synthesis ceases. 5-Fluorouracil and methotrexate produce similar effects. At the same time the ribonucleotide reductase activity and also the dATP pool are greatly increased, especially when fluorodeoxyuridine treatment is combined with continued illumination of the algae. In contrast, arabinosylcytosine, an inhibitor of DNA replication, has no effect on ribonucleotide reduction. The control of de novo enzyme synthesis in the eucaryotic algae therefore appears to depend on the presence of dTTP (or a related nucleotide), but not directly coupled to DNA synthesis. This interdependence resembles the situation observed in HeLa cells, while it may differ in detail from control mechanisms of ribonucleotide reductase studied in bacteria.  相似文献   

5.
Hydroxyurea, an inhibitor of ribonucleotide reductase, blocks replication of vaccinia virus. However, when medium containing hydroxyurea and dialyzed serum was supplemented with deoxyadenosine, the block to viral reproduction was circumvented, provided that an inhibitor of adenosine deaminase was also present. Deoxyguanosine, deoxycytidine, and deoxythymidine were ineffective alone and did not augment the deoxyadenosine effect. In fact, increasing concentrations of deoxyguanosine and deoxythymidine, but not deoxycytidine, eliminated the deoxyadenosine rescue, an effect that was reversed by the addition of low concentrations of deoxycytidine. These results suggested that the inhibition of viral replication by hydroxyurea was primarily due to a deficiency of dATP. Deoxyribonucleoside triphosphate pools in vaccinia virus-infected cells were measured at the height of viral DNA synthesis after a synchronous infection. With 0.5 mM hydroxyurea, the dATP pool was greater than 90% depleted, the dCTP and dGTP pools were 40 to 50% reduced, and the dTTP pool was increased. Assay of ribonucleotide reductase activity in intact virus-infected cells suggested that hydroxyurea may differentially affect reduction of the various substrates of the enzyme.  相似文献   

6.
Human fibroblasts in culture obtain deoxynucleotides by de novo ribonucleotide reduction or by salvage of deoxynucleosides. In cycling cells the de novo pathway dominates, but in quiescent cells the salvage pathway becomes important. Two forms of active mammalian ribonucleotide reductases are known. Each form contains the catalytic R1 protein, but the two differ with respect to the second protein (R2 or p53R2). R2 is cell cycle-regulated, degraded during mitosis, and absent from quiescent cells. The recently discovered p53-inducible p53R2 was proposed to be linked to DNA repair processes. The protein is not cell cycle-regulated and can provide deoxynucleotides to quiescent mouse fibroblasts. Here we investigate the in situ activities of the R1-p53R2 complex and two other enzymes of the de novo pathway, dCMP deaminase and thymidylate synthase, in confluent quiescent serum-starved human fibroblasts in experiments with [5-(3)H]cytidine, [6-(3)H]deoxycytidine, and [C(3)H(3)]thymidine. These cells had increased their content of p53R2 2-fold and lacked R2. From isotope incorporation, we conclude that they have a complete de novo pathway for deoxynucleotide synthesis, including thymidylate synthesis. During quiescence, incorporation of deoxynucleotides into DNA was very low. Deoxynucleotides were instead degraded to deoxynucleosides and exported into the medium as deoxycytidine, deoxyuridine, and thymidine. The rate of export was surprisingly high, 25% of that in cycling cells. Total ribonucleotide reduction in quiescent cells amounted to only 2-3% of cycling cells. We suggest that in quiescent cells an important function of p53R2 is to provide deoxynucleotides for mitochondrial DNA replication.  相似文献   

7.
A method was devised for identifying nonlethal mutants of T4 bacteriophage which lack the capacity to induce degradation of the deoxyribonucleic acid (DNA) of their host, Escherichia coli. If a culture is infected in a medium containing hydroxyurea (HU), a compound that blocks de novo deoxyribonucleotide biosynthesis by interacting with ribonucleotide reductase, mutant phage that cannot establish the alternate pathway of deoxyribonucleotide production from bacterial DNA will fail to produce progeny. The progeny of 100 phages that survived heavy mutagenesis with hydroxylamine were tested for their ability to multiply in the presence of HU. Four of the cultures lacked this capacity. Cells infected with one of these mutants, designated T4nd28, accumulated double-stranded fragments of host DNA with a molecular weight of approximately 2 x 10(8) daltons. This mutant failed to induce T4 endonuclease II, an enzyme known to produce single-strand breaks in double-stranded cytosine-containing DNA. The properties of nd28 give strong support to an earlier suggestion that T4 endonuclease II participates in host DNA degradation. The nd28 mutation mapped between T4 genes 32 and 63 and was very close to the latter gene. It is, thus, in the region of the T4 map that is occupied by genes for a number of other enzymes, including deoxycytidylate deaminase, thymidylate synthetase, dihydrofolate reductase, and ribonucleotide reductase, that are nonessential to phage production in rich media.  相似文献   

8.
Hydroxyurea inhibited the replication of bacteriophage T4 in Escherichia coli B. The concentration of hydroxyurea required to inhibit net deoxyribonucleic acid (DNA) synthesis 50% was about 50-fold less than that required in uninfected cells. Even in the presence of high hydroxyurea concentrations, phage DNA was readily synthesized from the products of breakdown of the E. coli DNA, and viable phage were made. Deoxyribonucleotide, but not ribonucleotide, synthesis was strongly inhibited in the presence of hydroxyurea. The data indicate that hydroxyurea specifically inhibits de novo DNA synthesis in E. coli infected with bacteriophage T4 by inhibiting the ribonucleoside diphosphate reductase system, but does not affect DNA synthesis at subsequent steps.  相似文献   

9.
Bacteriophage T4-infected Escherichia coli rendered permeable to nucleotides by sucrose plasmolysis exhibited two apparently separate pathways or channels to T4 DNA with respect to the utilization of exogenously supplied substrates. By one pathway, individual labeled ribonucleotides, thymidine (tdR), and 5-hydroxymethyl-dCMP could be incorporated into phage DNA. Incorporation of each of these labeled compounds was not dependent upon the addition of the other deoxyribonucleotide precursors, suggesting that a functioning de novo pathway to deoxyribonucleotides was being monitored. The second pathway or reaction required all four deoxyribonucleoside triphosphates or the deoxyribonucleoside monophosphates together with ATP. However, in this reaction, dTTP was not replaced by TdR. The two pathways were also distinguished on the basis of their apparent Mg2+ requirements and responses to N-ethylmaleimide, micrococcal nuclease, and to hydroxyurea, which is a specific inhibitor of ribonucleoside diphosphate reductase. Separate products were synthesized by the two channels, as shown by density-gradient experiments and velocity sedimentation analysis. Each of the pathways required the products of the T4 DNA synthesis genes. Furthermore, DNA synthesis by each pathway appeared to be coupled to the functioning of several of the phage-induced enzymes involved in deoxyribonucleotide biosynthesis. Both systems represent replicative phage DNA synthesis as determined by CsCl density-gradient analysis. Autoradiographic and other studies provided evidence that both pathways occur in the same cell. Further studies were carried out on the direct role of dCMP hydroxymethylase in T4 DNA replication. Temperature-shift experiments in plasmolyzed cells using a temperature-sensitive mutant furnished strong evidence that this gene product is necessary in DNA replication and is not functioning by allowing preinitiation of DNA before plasmolysis.  相似文献   

10.
Chlamydiae are obligate intracellular bacteria that are dependent on eukaryotic host cells for ribonucleoside triphosphates but not deoxyribonucleotide triphosphates. Ribonucleotide reductase is the only enzyme known to catalyze the direct conversion of a ribonucleotide to a deoxyribonucleotide. Hydroxyurea inhibits ribonucleotide reductase by inactivating the tyrosine free radical present in the small subunit of the enzyme. In this report, we show that Chlamydia trachomatis growth is inhibited by hydroxyurea in both wild-type mouse L cells and hydroxyurea-resistant mouse L cells. Hydroxyurea was used as a selective agent in culture to isolate, by a stepwise procedure, a series of C. trachomatis isolates with increasing levels of resistance to the cytotoxic effects of the drug. One of the drug-resistant C. trachomatis isolates (L2HR-10.0) was studied in more detail. L2HR-10.0 retained its drug resistance phenotype even after passage in the absence of hydroxyurea for 10 growth cycles. In addition, L2HR-10.0 was cross resistant to guanazole, another inhibitor of ribonucleotide reductase. Results obtained from hydroxyurea inhibition studies using various host cell-parasite combinations indicated that inhibition of host cell and C. trachomatis DNA synthesis by hydroxyurea can occur but need not occur simultaneously. Crude extract prepared from highly purified C. trachomatis reticulate bodies was capable of reducing CDP to dCDP. The CDP reductase activity was not inhibited by monoclonal antibodies to the large and small subunits of mammalian ribonucleotide reductase, suggesting that the activity is chlamydia specific. The CDP reductase activity was inhibited by hydroxyurea. Crude extract prepared from drug-resistant L2HR-10.0 reticulate bodies contained an elevation in ribonucleotide reductase activity. In total, our results indicate that C. trachomatis obtains the precursors for DNA synthesis as ribonucleotides with subsequent conversion to deoxyribonucleotides catalyzed by a chlamydia-specific ribonucleotide reductase.  相似文献   

11.
Deoxyuridine triphosphate pools after polyoma virus infection   总被引:2,自引:0,他引:2  
The synthesis of polyoma DNA in virus-infected 3T6 mouse fibroblasts is discontinuous with the intermediate formation of short Okazaki fragments. Hydroxyurea, an inhibitor of the enzyme ribonucleotide reductase, inhibits polyoma DNA synthesis, as measured by incorporation of radioactive thymidine. In the inhibited state, almost all incorporation occurs into short fragments. We investigated to what extent formation of short DNA fragments might be the result of incorporation of deoxyuridine triphosphate (dUTP) into DNA, followed by excision and repair reactions. We devised a sensitive enzymatic method for measuring dUTP in cell extracts which allows the determination of the dUTP pool when this pool amounts to between 0.1 and 2% of the dTTP pool. No dUTP was detected in growing mouse fibroblasts. After infection with polyoma virus cell extracts contained 0.4% dUTP (of dTTP) at the peak of DNA synthesis. Addition of hydroxyurea at this point led to a disappearance of dUTP. We conclude that dUTP incorporation can contribute only minimally to the generation of short fragments during polyoma DNA synthesis.  相似文献   

12.
Herpes simplex virus type 1 (HSV-1) and HSV-2 trigger or counteract apoptosis by a cell-specific mechanism. Our studies are based on previous findings that the protein kinase (PK) domain of the large subunit of HSV-2 ribonucleotide reductase (ICP10) activates the Ras/MEK/MAPK pathway (Smith et al., J. Virol. 74:10417, 2000). Because survival pathways can modulate apoptosis, we used cells that are stably or transiently transfected with ICP10 PK, an HSV-2 mutant deleted in ICP10 PK (ICP10DeltaPK) and the MEK-specific inhibitor U0126 to examine the role of ICP10 PK in apoptosis. Apoptosis was induced by staurosporine or D-mannitol in human (HEK293) cells or HEK293 cells stably transfected with the ICP10 PK-negative mutant p139 (JHL15), as determined by morphology, DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL), caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage. HEK293 cells stably transfected with ICP10 (JHLa1) were protected from apoptosis. ICP10 but not p139 protected neuronally differentiated PC12 cells from death due to nerve growth factor withdrawal, and apoptosis (determined by TUNEL) and caspase-3 activation were seen in primary hippocampal cultures infected with ICP10DeltaPK but not with HSV-2 or a revertant virus [HSV-2(R)]. The data indicate that ICP10 has antiapoptotic activity under both paradigms and that it requires a functional PK activity. The apoptotic cells in primary hippocampal cultures were neurons, as determined by double immunofluorescence with fluorescein-labeled dUTP (TUNEL) and phycoerythrin-labeled antibodies specific for neuronal proteins (TuJ1 and NF-160). Protection from apoptosis was associated with MEK/MAPK activation, as evidenced by (i) increased levels of activated (phosphorylated) MAPK in HSV-2- but not ICP10DeltaPK-infected cultures and (ii) inhibition of MAPK activation by the MEK-specific inhibitor U0126. MEK and MAPK were activated by infection with UV-inactivated but not antibody-neutralized HSV-2, suggesting that activation requires cellular penetration but is independent of de novo viral protein synthesis.  相似文献   

13.
Nitric oxide displays pro- and anti-tumor activities, prompting further studies to better understand its precise role. Nitric oxide inhibits ribonucleotide reductase (RnR), the limiting enzyme for de novo dNTP synthesis. We report here the first detailed analysis of dNTP variations induced in tumor cells by NO. NO prodrugs induced a depletion in dNTP pools and an activation of the pyrimidine salvage pathway, as did hydroxyurea, the prototypic RnR inhibitor. In the presence of dipyridamole, which blocked salvaged dNTP synthesis, depletion of dNTP pools was also observed in tumor cells cocultured with macrophages expressing the high-output iNOS activity. This effect was rapid, reversible, blocked by NO scavengers, and cGMP independent. It was quantitatively correlated to iNOS activity. In the absence of dipyridamole, NO still induced a decrease in dATP concentration in tumor cells cocultured with macrophages, whereas surprisingly, concentrations of dCTP and dTTP expanded considerably, resulting in a strong imbalance in dNTP pools. NO prodrugs did not cause such an increase in pyrimidine dNTP, suggesting that pyrimidine nucleosides were released by NO-injured macrophages. Altered dNTP levels have been reported to promote mutagenesis and apoptosis. It is suggested that abnormal changes in dNTP pools in tumors might contribute to NO-dependent toxicity.  相似文献   

14.
The mammalian ribonucleotide reductase consists of two nonidentical subunits, protein M1 and M2. M1 binds nucleoside triphosphate allosteric effectors, whereas M2 contains a tyrosine free radical essential for activity. The activity of ribonucleotide reductase increased 10-fold in extracts of mouse L cells 6 h after infection with pseudorabies virus. The new activity was not influenced by antibodies against subunit M1 of calf thymus ribonucleotide reductase, whereas the reductase activity in uninfected cells was completely neutralized. Furthermore, packed infected cells (but not mock-infected cells) showed an electron paramagnetic resonance spectrum of the tyrosine free radical of subunit M2 of the cellular ribonucleotide reductase. These data given conclusive evidence that on infection, herpesvirus induces a new or modified ribonucleotide reductase. The virus-induced enzyme showed the same sensitivity to inhibition by hydroxyurea as the cellular reductase. The allosteric regulation of the virus enzyme was completely different from the regulation of the cellular reductase. Thus, CDP reduction catalyzed by the virus enzyme showed no requirement for ATP as a positive effector, and no feedback inhibition was observed by dTTP or dATP. The virus reductase did not even bind to a dATP-Sepharose column which bound the cellular enzyme with high affinity.  相似文献   

15.
A mutant V79 hamster fibroblast cell line lacking the enzyme dCMP deaminase was used to study the regulation of deoxynucleoside triphosphate pools by substrate cycles between pyrimidine deoxyribosides and their 5'-phosphates. Such cycles were suggested earlier to set the rates of cellular import and export of deoxyribosides, thereby influencing pool sizes (V. Bianchi, E. Pontis, and P. Reichard, Proc. Natl. Acad. Sci. USA 83:986-990, 1986). While normal V79 cells derived more than 80% of their dTTP from CDP reduction via deamination of dCMP, the mutant cells had to rely completely on UDP reduction for de novo synthesis of dTTP, which became limiting for DNA synthesis. Because of the allosteric properties of ribonucleotide reductase, CDP reduction was not diminished, leading to a large expansion of the dCTP pool. The increase of this pool was kept in check by a shift in the balance of the deoxycytidine/dCMP cycle towards the deoxynucleoside, leading to massive excretion of deoxycytidine. In contrast, the balance of the deoxyuridine/dUMP cycle was shifted towards the nucleotide, facilitating import of extracellular deoxynucleosides.  相似文献   

16.
17.
18.
While investigating the basis for marked natural asymmetries in deoxyribonucleoside triphosphate (dNTP) pools in mammalian cells, we observed that culturing V79 hamster lung cells in a 2% oxygen atmosphere causes 2-3-fold expansions of the dATP, dGTP, and dTTP pools, whereas dCTP declines by a comparable amount. Others have made similar observations and have proposed that, because O(2) is required for formation of the catalytically essential oxygen-bridged iron center in ribonucleotide reductase, dCTP depletion at low oxygen tension results from direct or indirect effects upon ribonucleotide reductase. We have tested the hypothesis that oxygen limitation affects ribonucleotide specificity using recombinant mouse ribonucleotide reductase and an assay that permits simultaneous monitoring of the reduction of all four nucleotide substrates. Preincubation and assay of the enzyme in an anaerobic chamber caused only partial activity loss. Accordingly, we treated the enzyme with hydroxyurea, followed by removal of the hydroxyurea and exposure to atmospheres of varying oxygen content. The activity was totally depleted by hydroxyurea treatment and nearly fully regained by exposure to air. By the criterion of activities regained at different oxygen tensions, we found CDP reduction not to be specifically sensitive to oxygen depletion; however, GDP reduction was specifically sensitive. The basis for the differential response to reactivation by O(2) is not known, but it evidently does not involve varying rates of reactivation of different allosteric forms of the enzyme or altered response to allosteric effectors at reduced oxygen tension.  相似文献   

19.
An effective HPLC method for detecting deoxyribonucleoside triphosphates in hyphae from the fungus Neurospora crass has been developed. In rapidly growing cells the nucleotide levels vary from 11.8 pmoles/μg DNA for dGTP to 24.2 pmoles/μg DNA for dTTP. These levels fall by approximately one half in stationary-phase cultures but the ration of each pool to dGTP remains the same. The dNTP pools in conidia are at least 5-fold lower than in rapidly growing cells. The pool sizes are the same in static and shaking cultures. When the ribonucleotide reductase inhibitor, hydroxyurea (30 mM), is added to rapidly growing cultures, DNA synthesis is stopped and the dGTP pool is reduced by 39%, while the size of the other poolds remains the same. In the presence of 11 mM histadine, DNA synthesis is also stopped and the size of the dGTP pool reduced by 46% while the deoxypyrimidine pools are somewhat increased. This suggests that the toxicity of excess histidine in Neurospora may be due to its ability to interact with the ribonucleotide reductase, inactivating the enzyme. Histidine may react with free radical at the active sites, as does hydroxyurea.  相似文献   

20.
An effective HPLC method for detecting deoxyribonucleoside triphosphates in hyphae from the fungus Neurospora crass has been developed. In rapidly growing cells the nucleotide levels vary from 11.8 pmoles/μg DNA for dGTP to 24.2 pmoles/μg DNA for dTTP. These levels fall by approximately one half in stationary-phase cultures but the ration of each pool to dGTP remains the same. The dNTP pools in conidia are at least 5-fold lower than in rapidly growing cells. The pool sizes are the same in static and shaking cultures. When the ribonucleotide reductase inhibitor, hydroxyurea (30 mM), is added to rapidly growing cultures, DNA synthesis is stopped and the dGTP pool is reduced by 39%, while the size of the other poolds remains the same. In the presence of 11 mM histadine, DNA synthesis is also stopped and the size of the dGTP pool reduced by 46% while the deoxypyrimidine pools are somewhat increased. This suggests that the toxicity of excess histidine in Neurospora may be due to its ability to interact with the ribonucleotide reductase, inactivating the enzyme. Histidine may react with free radical at the active sites, as does hydroxyurea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号