首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

2.
Aspartic proteases are the focus of recent research interest in understanding the physiological importance of this class of enzymes in plants. This is the first report of an aspartic protease from the seeds of Vigna radiata. The aspartic protease was purified to homogeneity by fractional ammonium sulfate precipitation and pepstatin-A agarose affinity column. It was found to have a molecular weight of 67,406 Da by gel filtration chromatography. SDS-PAGE analysis revealed the presence of a heterodimer with subunits of molecular weights of 44,024 and 23,349 Da respectively. The enzyme was pH stable with the amino acid analysis confirming the molecular weight of the protein. The substrate cleavage site as analyzed by using the synthetic substrate was found to be the Phe-Tyr bond. The kinetic interactions of the enzyme were studied with the universal inhibitor, pepstatin A. This is the first report on the interactions of a plant aspartic protease with pepstatin-A, an inhibitor from a microbial source. A competitive one-step mechanism of binding is observed. The progress curves are time-dependent and consistent with tight binding inhibition. The K(i) value of the reversible complex of pepstatin with the enzyme was 0.87 microM whereas the overall inhibition constant K(i)* was 0.727 microM.  相似文献   

3.
A screening test for incorporation of [35S]-labeled sulfate into glycoprotein with the sulfotransferase system from Dictyosterium discoideum was done. [35S]-Labeled sulfate was incorporated effectively into the aspartic proteinase of Mucor miehei. The oligosaccharide chain of the aspartic proteinase was about 2 kDa by Endo F digestion and sulfate was incorporated into the oligosaccharide chain of the enzyme.  相似文献   

4.
An aspartic protease that is significantly produced by baculovirus-infected Spodoptera frugiperda Sf9 insect cells was purified to homogeneity from a growth medium. To monitor aspartic protease activity, an internally quenched fluoresce (IQF) substrate specific to cathepsin D was used. The purified aspartic protease showed a single protein band on SDS–PAGE with an apparent molecular mass of 40 kDa. The N-terminal amino acid sequence of the enzyme had a high homology to a Bombyx mori aspartic protease. The enzyme showed greatest affinity for the IQF substrate at pH 3.0 with a K m of 0.85 μM. The k cat and k cat?K m values were 13 s?1 and 15 s?1 μM?1 respectively. Pepstatin A proved to be a potent competitive inhibitor with inhibitor constant, K i, of 25 pM.  相似文献   

5.
The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (Rfree = 21.2%) at 1.70 Å resolution and 15.8% (Rfree = 19.2%) at 1.85 Å resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly β-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity.  相似文献   

6.
cDNA of an aspartic proteinase secreted by Candida albicans No. 114 was isolated using the polymerase chain reaction (PCR). The primary structure of the enzyme was deduced from the nucleotide sequence of the cDNA and compared with the structures of Saccharomyces cerevisiae proteinase A and vacuolar aspartyl proteinase of C. albicans. The mature aspartic proteinase consisted of 341 amino acid residues, and was 17.6 and 15.3% identical with the proteinase A and the aspartyl proteinase, respectively. Two active aspartic acid sites and the amino acids near those sites were conserved in the aspartic proteinase. We also showed that there is another gene of aspartic proteinase than that of strain ATCC10231 reported by Hube et al (J. Med. Vet. Mycol. 29 (1991)) in the same C. albicans genome, both in that strain and in No. 114.  相似文献   

7.
The complete amino acid sequence has been derived for the zymogen of streptococcal proteinase. The protein yielded a unique sequence containing 337 amino acids in a single polypeptide chain. The NH2-terminal residue of the zymogen is aspartic acid and the COOH terminus is proline. The signal peptide commonly associated with the intracellular form of many proteins secreted from eukaryotic cells was absent from the zymogen sequence. The transformation of the zymogen to the enzyme under controlled conditions of proteolysis by trypsin and by streptococcal protease itself involves the removal of 84 amino acid residues from the NH2 terminus of the zymogen. The zymogen-to-enzyme conversion is accompanied by a change in serological specificity. An intermediate, modified zymogen formed in the transformation process contains only 12 amino acid residues less than the zymogen but shows the serological reactivity of both the zymogen and the enzyme.  相似文献   

8.
A superoxide dismutase (SOD) was purified from Spirulina platensis sonicate. The SOD was purified to homogeneity (48-fold and 0.24% yield) through ammonium sulphate precipitation and DEAE-52 anion exchange chromatography. The SOD from S. platensis appeared to be a homodimer with a molecular weight of 30 kDa and a subunit MW of 15 kDa as determined by both native polyacrylamide gel electrophoresis and mass spectrometry. The enzyme activity was stable at pH 6.5–10.0 and 50 °C. Using group-specific chemical modifying reagents, the amino acids arginine, histidine, tryptophan, tyrosine and aspartic acid were identified to be essential for S. platensis SOD activity. The amino acid composition was found to lack methionine and cysteine. The inhibition of activity by H2O2 suggests that the enzyme may be an iron containing SOD.  相似文献   

9.
Summary A mathematical model was formulated to describe the kinetics and stoichiometry of growth and proteinase production in Bacillus megaterium. Synthesis of the extracellular proteinase in a batch culture is repressed by amino acids. The specific rate of formation of the enzyme (r E) can be described by the formula {ie373-1}, where k 2 and k 3 stand for the non-repressible and repressible part of enzyme synthesis respectively, k S 2 is a repression coefficient and S 2 indicates the concentration of amono acids; the values of k 2 and k S 2 depend on the composition of the mixture of amino acids. Even in a high concentration, a single amino acid is less effective than a mixture of amino acids. The dependence of the proteinase repression on the concentration of an external amino acid (leucine) follows the same course as its rate of incorporation into proteins, approaching saturation at concentrations higher than 50 M (half saturation approximately 10 M). However, the total uptake of leucine did not exhibit any saturation even at 500 M external concentration.Symbols X biomass concentration, g/l - E proteinase concentration, unit/l - t time, h - S 1 concentration of glucose, g/l - S 2 concentration of amino acids, g/l - specific growth rate, l/h - rE specific rate of enzyme production, unit/g/h - k 1 growth kinetic constant, l/h - k 2 product formation kinetic constant (for non-repressible part of enzyme synthesis), unit/g - k 3 product formation kinetic constant (for repressible portion of enzyme synthesis), unit/g - k S 1 saturation constant, g/l - k S 2 repression coefficient for a certain amino acid or amino acids mixture, g/l  相似文献   

10.
The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained.  相似文献   

11.
《FEBS letters》1986,199(2):139-144
The amino acid sequence of proteinase K (EC 3.4.21.14) from Tritirachium album Limber has been determined by analysis of fragments generated by cleavage with CNBr or BNPS-skatole. The enzyme consists of a single peptide chain containing 277 amino acid residues, corresponding to Mr 28 930. Comparison of the sequence with those of the serine proteinases reveals a high degree of homology (about 35%) to the subtilisin-related enzyme. But in contrast to the subtilisins, proteinase K contains 2 disulfide bonds and a free cysteine residue. This finding may indicate that proteinase K is a member of a new subfamily of the subtilisins.  相似文献   

12.
Summary The aspartic protease gene of a zygomycete fungus Mucor pusillus was expressed in Saccharomyces cerevisiae under the control of the yeast GAL7 promoter. A putative preproenzyme with an NH2-terminal extension of 66 amino acids directed by the gene was processed in yeast cells and the mature enzyme, whose NH2-terminus was identical to that of the Mucor enzyme, was efficiently secreted into the medium at a concentration exceeding 150 mg/l. The enzyme secreted from the recombinant yeast was more glycosylated than the native Mucor enzyme but its enzymatic properties were almost identical with those of the native enzyme, which has been used as a milk coagulant in cheese manufacture.  相似文献   

13.
A new extracellular 90-kDa serine proteinase with an isoelectric point (pI) of 3.9 was purified from Bicillus subtilis (natto). Microheterogeneity was detected in the 50-kDa protease of bacillopeptidase F with pI 4.4 reported previously by Wu et al. and the sequence for the first 25 amino acids in the internal region of the enzyme was analyzed: ATDGVEWNVDQIDAPKAWALGYDGA. The cleavage sites in the oxidized B-chain of insulin by the proteinase were CyS03H7-Gly8, Val12-Glu13, Tyr16-Leu17, and Phe25-Tyr26. The activity was inhibited by phenylmethylsulfonyl fluoride (PMSF) and chymostatin, while the activity was not inhibited by proteinaceous Streptomyces subtilisin inhibitor (SSI) or α2-macroglubulin.  相似文献   

14.
15.
The specificity of proteinase K from Tritirachium album Limber was determined using various synthetic peptide substrates. The esterase activity against N-acylated amino acid esters indicated that the enzyme is primarily specific against aromatic or hydrophobic amino acid residues at the carboxyl side of the splitting point. Secondary interaction for hydrolysis was also studied using peptide esters or others, which showed that the enzyme activity is markedly promoted by elongating the peptide chain to the N-terminal from the splitting point. Thus, peptide chloromethyl ketone derivatives such as Cbz-Ala-Gly-PheCH2Cl inactivated the enzyme activity markedly.  相似文献   

16.
Summary Extracellular neutral proteinase was produced in 10 l and 240 l batch cultivations of Bacillus isolate X-3, identified as B. cereus and deposited as DSM 3101. The enzyme concentration was about 37–47 mg/l in the fermentation broth. The enzyme was extracted from the medium by adsorption chromatography with Amberlite XAD-7-resin, and further purified by acetone precipitation and affinity chromatography. The mol. wt. is 35 000 Da. The enzyme is thermostabilized by calcium, inhibited by EDTA and o-phenanthrolin and has its pH-optimum at pH 6.8. The specific activity is 4.36·10-4 kat·mg-1 at 35°C and the k cat/K m on FAGLA (furylacryloyl-glyleu-NH2) is 2.25·104 M-1 s-1 at 30°C, pH 6.8. The proteinase is stable up to 60°C. The N-terminal amino acid sequence exhibits a high sequence homology (63%) to thermolysin and a low homology (18%) to B. subtilis neutral protease A. The enzyme may therefore be suitable for structural comparison with thermolysin in order to study factors affecting thermostability.  相似文献   

17.
Human glucose 6-phosphate dehydrogenase (d-glucose 6-phosphate: NADP oxidoreductase, EC 1.1.1.49) (A+), an electrophoretically distinguishable variant found in Negroes, was purified by column chromatographic techniques. The sedimentation patterns of analytical ultracentrifugation and interference patterns of sedimentation equilibrium indicate a homogeneous preparation. The molecular weight (by sedimentation equilibrium method) was estimated as 230,000, which was closely similar to that of the normal wild type enzyme (B+). The sedimentation constant of the variant enzyme (S 20,w=9.0) was smaller than that of the B+ enzyme (S 20,w=10.0). The molecular weight was about 45,000 in 4 mguanidine hydrochloride, indicating that the A+ enzyme, as well as the B+ enzyme, consisted of six subunits of similar size. The optimal pH of the variant enzyme was slightly higher than that of the B+ enzyme. In contrast to the B+ enzyme, magnesium ion increased the A+ enzyme activity with NAD as substrate. The Michaelis constants and the turnover rate were similar to those of the B+ enzyme. The A+ enzyme was serologically indistinguishable from the B+ enzyme when the anti-B+ serum was used as antibody. No significant difference was found in the amino acid composition of acid hydrolysates of the B+ and the A+ enzymes. This does not exclude an amino acid substitution, and, in fact, a single amino acid substitution, i.e., asparagine in B+ and aspartic acid in A+ enzyme, has been found and is being being reported separately.Supported by Research Grant HD-02497-01 and H-3901 from the National Institutes of Health.  相似文献   

18.
The amino acid sequence of Mucor pusillus aspartic proteinase was determined by analysis of fragments obtained from cleavage of the enzyme by CNBr and limited tryptic digestion. The proteinase is a single polypeptide chain protein containing 361 amino acid residues, cross-linked by two disulfide bonds. A sugar moiety composed of two GlcNAc residues and four neutral sugar residues is asparagine-linked to the chain. The sequence of M. pusillus proteinase is highly homologous with the M. miehei proteinase (83% identity). The homology with other aspartic proteinases is low (22-24%) and indicates that the Mucor proteinases diverged at an early evolutionary phase. The most conservative regions of the molecule are those involved in catalysis and forming the binding cleft and the core region of the molecule.  相似文献   

19.
Screening tests for aspartic proteinases with milk-clotting activity were done on basidiomycetes. Crude enzymes from 6 strains had a high ratio of milk-clotting activity to caseinolytic activity. These enzymes showed acidic pH optimum for proteolytic activity and were inhibited considerably by pepstatin, a specific aspartic proteinase inhibitor. Among them, the crude enzyme from Laetiporus sulphureus was more heat-labile than the other enzymes.  相似文献   

20.
A new serine alkaline proteinase (ALPase II) was purified from the culture broth of an alkalophilicBacillus sp. NKS-21. The molecular weight of ALPase II was estimated to be 32,000 by SDS-polyacrylamide gel electrophoresis. The enzyme had a very low isoelectric point (pI), which was determined to be 2.8. An optimum pH of this enzyme was 10.2. The specific activity was 0.28 katal/kg of protein for milk casein, 0.34 katal/kg for succinyl-l-alanyl-l-alanyl-l-prolyl-l-phenylalanyl-4-methyl-coumaryl-7-amide (Suc-Ala-Ala-Pro-Phe-MCA) and 8.5 katal/kg for succinyl-l-alanyl-l-alanyl-l-prolyl-l-phenylalanyl-p-nitroanilide (Suc-Ala-Ala-Pro-Phe-pNA).The substrate specificity of the alkaline proteinase was studied with the synthetic fluorogenic and chromogenic substrates. It was most favorable for the enzyme that the P1 site of the substrate might be hydrophobic and bulky amino residue (Phe or Tyr). When the substrate contained four amino residues, the proteinase efficiently expressed its activity. The alkaline proteinase had higher specificity than those of the bacterial serine proteinases, subtilisins Carlsberg and BPN, and lower specificity than that of serine alkaline proteinase with pI 8.2 (ALPase I) obtained from the same bacteria NKS-21. ALPase II did not react with the anti-ALPase I antiserum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号