共查询到20条相似文献,搜索用时 15 毫秒
1.
Syndecan-4 modulates focal adhesion kinase phosphorylation 总被引:7,自引:0,他引:7
Wilcox-Adelman SA Denhez F Goetinck PF 《The Journal of biological chemistry》2002,277(36):32970-32977
The cell-surface heparan sulfate proteoglycan syndecan-4 acts in conjunction with the alpha(5)beta(1) integrin to promote the formation of actin stress fibers and focal adhesions in fibronectin (FN)-adherent cells. Fibroblasts seeded onto the cell-binding domain (CBD) fragment of FN attach but do not fully spread or form focal adhesions. Activation of Rho, with lysophosphatidic acid (LPA), or protein kinase C, using the phorbol ester phorbol 12-myristate 13-acetate, or clustering of syndecan-4 with antibodies directed against its extracellular domain will stimulate formation of focal adhesions and stress fibers in CBD-adherent fibroblasts. The distinct morphological differences between the cells adherent to the CBD and to full-length FN suggest that syndecan-4 may influence the organization of the focal adhesion or the activation state of the proteins that comprise it. FN-null fibroblasts (which express syndecan-4) exhibit reduced phosphorylation of focal adhesion kinase (FAK) tyrosine 397 (Tyr(397)) when adherent to CBD compared with FN-adherent cells. Treating the CBD-adherent fibroblasts with LPA, to activate Rho, or the tyrosine phosphatase inhibitor sodium vanadate increased the level of phosphorylation of Tyr(397) to match that of cells plated on FN. Treatment of the fibroblasts with PMA did not elicit such an effect. To confirm that this regulatory pathway includes syndecan-4 specifically, we examined fibroblasts derived from syndecan-4-null mice. The phosphorylation levels of FAK Tyr(397) were lower in FN-adherent syndecan-4-null fibroblasts compared with syndecan-4-wild type and these levels were rescued by the addition of LPA or re-expression of syndecan-4. These data indicate that syndecan-4 ligation regulates the phosphorylation of FAK Tyr(397) and that this mechanism is dependent on Rho but not protein kinase C activation. In addition, the data suggest that this pathway includes the negative regulation of a protein-tyrosine phosphatase. Our results implicate syndecan-4 activation in a direct role in focal adhesion regulation. 相似文献
2.
We postulated that the syntaxins, because of their key role in SNARE complex formation and exocytosis, could be important targets for signaling by intracellular kinases involved in secretion. We found that syntaxin 4 was phosphorylated in human platelets treated with a physiologic agent that induces secretion (thrombin) but not when they were treated with an agent that prevents secretion (prostacyclin). Syntaxin 4 phosphorylation was blocked by inhibitors of activated protein kinase C (PKC), and, in parallel assays, PKC inhibitors also blocked secretion from thrombin-activated platelets. In platelets, cellular activation by thrombin or phorbol 12-myristate 13-acetate decreased the binding of syntaxin 4 with SNAP-23, another platelet t-SNARE. Phosphatase inhibitors increased syntaxin 4 phosphorylation and further decreased syntaxin 4-SNAP-23 binding induced by cell activation. Conversely, a PKC inhibitor blocked syntaxin 4 phosphorylation and returned binding of syntaxin 4-SNAP-23 to that seen in nonstimulated platelets. In vitro, PKC directly phosphorylated platelet syntaxin 4 and recombinant syntaxin 4. PKC phosphorylation in vitro inhibited (71 +/- 8%) the binding of syntaxin 4 to SNAP-23. These results provide evidence that extracellular activation can be coupled through intracellular PKC signaling so as to modulate SNARE protein interactions involved in platelet exocytosis. 相似文献
3.
4.
5.
Site-specific phosphorylation by protein kinase C inhibits assembly-promoting activity of microtubule-associated protein 4 总被引:4,自引:0,他引:4
A Mori H Aizawa T C Saido H Kawasaki K Mizuno H Murofushi K Suzuki H Sakai 《Biochemistry》1991,30(38):9341-9346
We have examined the phosphorylation of bovine microtubule-associated protein 4 (MAP4), formerly named MAP-U, by protein kinase C (PKC). When MAP4 was incubated with PKC, about 1 mol of phosphate was incorporated/mol of MAP4. Phosphorylation of MAP4 caused a remarkable decrease in the ability of the MAP to stimulate microtubule assembly. MAP4 consists of an amino-terminal projection domain and a carboxyl-terminal microtubule-binding domain. The carboxyl-terminal domain is subdivided into a Pro-rich region and an assembly-promoting (AP) sequence region containing four tandem repeats of AP sequence that is conserved in MAP4, MAP2, and tau [Aizawa et al. (1990) J. Biol. Chem. 265, 13849-13855]. In order to identify the site of MAP4 phosphorylated by PKC, a series of expressed MAP4 fragments was prepared and treated with the kinase. A fragment corresponding to the Pro-rich region (P fragment) was phosphorylated, while fragments corresponding to the projection domain and the AP sequence region were not. In addition, chymotryptic digestion of an authentic MAP4 prephosphorylated by PKC revealed that phosphate was incorporated almost exclusively into a 27-kDa fragment containing the carboxyl-terminal half of the Pro-rich region. We investigated the phosphorylation site in MAP4 using the P fragment and found that Ser815 was phosphorylated almost exclusively. We conclude that the phosphorylation of a single Ser residue in the Pro-rich region negatively regulates the assembly-promoting activity of MAP4. 相似文献
6.
7.
Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2 总被引:1,自引:0,他引:1
Ding G Sonoda H Yu H Kajimoto T Goparaju SK Jahangeer S Okada T Nakamura S 《The Journal of biological chemistry》2007,282(37):27493-27502
Sphingosine kinase (SPHK) is a key enzyme producing important messenger sphingosine 1-phosphate and is implicated in cell proliferation and suppression of apoptosis. Because the extent of agonist-induced activation of SPHK is modest, signaling via SPHK may be regulated through its localization at specific intracellular sites. Although the SPHK1 isoform has been extensively studied and characterized, the regulation of expression and function of the other isoform, SPHK2, remain largely unexplored. Here we describe an important post-translational modification, namely, phosphorylation of SPHK2 catalyzed by protein kinase D (PKD), which regulates its localization. Upon stimulation of HeLa cells by tumor promoter phorbol 12-myristate 13-acetate, a serine residue in a novel and putative nuclear export signal, identified for the first time, in SPHK2 was phosphorylated followed by SPHK2 export from the nucleus. Constitutively active PKD phosphorylated this serine residue in the nuclear export signal both in vivo and in vitro. Moreover, down-regulation of PKDs through RNA interference resulted in the attenuation of both basal and phorbol 12-myristate 13-acetate-induced phosphorylation, which was followed by the accumulation of SPHK2 in the nucleus in a manner rescued by PKD over-expression. These results indicate that PKD is a physiologically relevant enzyme for SPHK2 phosphorylation, which leads to its nuclear export for subsequent cellular signaling. 相似文献
8.
A dominant-negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. 总被引:8,自引:6,他引:8 下载免费PDF全文
Cyclins contain two characteristic cyclin folds, each consisting of five alpha-helical bundles, which are connected to one another by a short linker peptide. The first repeat makes direct contact with cyclin-dependent kinase (CDK) subunits in assembled holoenzyme complexes, whereas the second does not contribute directly to the CDK interface. Although threonine 156 in mouse cyclin D1 is predicted to lie at the carboxyl terminus of the linker peptide that separates the two cyclin folds and is buried within the cyclin subunit, mutation of this residue to alanine has profound effects on the behavior of the derived cyclin D1-CDK4 complexes. CDK4 in complexes with mutant cyclin D1 (T156A or T156E but not T156S) is not phosphorylated by recombinant CDK-activating kinase (CAK) in vitro, fails to undergo activating T-loop phosphorylation in vivo, and remains catalytically inactive and unable to phosphorylate the retinoblastoma protein. Moreover, when it is ectopically overexpressed in mammalian cells, cyclin D1 (T156A) assembles with CDK4 in the cytoplasm but is not imported into the cell nucleus. CAK phosphorylation is not required for nuclear transport of cyclin D1-CDK4 complexes, because complexes containing wild-type cyclin D1 and a CDK4 (T172A) mutant lacking the CAK phosphorylation site are efficiently imported. In contrast, enforced overexpression of the CDK inhibitor p21Cip1 together with mutant cyclin D1 (T156A)-CDK4 complexes enhanced their nuclear localization. These results suggest that cyclin D1 (T156A or T156E) forms abortive complexes with CDK4 that prevent recognition by CAK and by other cellular factors that are required for their nuclear localization. These properties enable ectopically overexpressed cyclin D1 (T156A), or a more stable T156A/T286A double mutant that is resistant to ubiquitination, to compete with endogenous cyclin D1 in mammalian cells, thereby mobilizing CDK4 into cytoplasmic, catalytically inactive complexes and dominantly inhibiting the ability of transfected NIH 3T3 fibroblasts to enter S phase. 相似文献
9.
Fibronectin phosphorylation by ecto-protein kinase 总被引:1,自引:0,他引:1
The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with [gamma-32]ATP for 10 min at 37 degrees C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with [gamma-32P]ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation. 相似文献
10.
Fang X Chen YT Sessions EH Chowdhury S Vojkovsky T Yin Y Pocas JR Grant W Schröter T Lin L Ruiz C Cameron MD LoGrasso P Bannister TD Feng Y 《Bioorganic & medicinal chemistry letters》2011,21(6):1844-1848
Rho kinase (ROCK) is an attractive therapeutic target for various diseases including glaucoma, hypertension, and spinal cord injury. Herein, we report the development of a series of ROCK-II inhibitors based on 4-quinazolinone and quinazoline scaffolds. SAR studies at three positions of the quinazoline core led to the identification of analogs with high potency against ROCK-II and good selectivity over protein kinase A (PKA). 相似文献
11.
F J Kayne 《Biochemical and biophysical research communications》1974,59(1):8-13
Adult mammalian erythroblasts from an anaemic rabbit were separated into fractions of cells at different stages of development using the velocity sedimentation technique. The iron content of the stroma and cytoplasm of the cells in each fraction was determined by atomic absorption spectroscopy. A high proportion of the iron in the dividing erythroblasts was found to be associated with the cell stroma. After the final cell division the proportion of stromal iron rapidly declines and it appears that stromal iron is mobilised at this stage and utilised by the non-dividing erythroblasts for haemoglobin synthesis. 相似文献
12.
Src kinase regulation by phosphorylation and dephosphorylation 总被引:10,自引:0,他引:10
Roskoski R 《Biochemical and biophysical research communications》2005,331(1):1-14
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPalpha, PTPepsilon, and PTPlambda. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined. 相似文献
13.
Protein phosphorylation, mediated by a family of enzymes called cyclin-dependent kinases (Cdks), plays a central role in the cell-division cycle of eukaryotes. Phosphorylation by Cdks directs the cell cycle by modifying the function of regulators of key processes such as DNA replication and mitotic progression. Here, we present a novel computational procedure to predict substrates of the cyclin-dependent kinase Cdc28 (Cdk1) in the Saccharomyces cerevisiae. Currently, most computational phosphorylation site prediction procedures focus solely on local sequence characteristics. In the present procedure, we model Cdk substrates based on both local and global characteristics of the substrates. Thus, we define the local sequence motifs that represent the Cdc28 phosphorylation sites and subsequently model clustering of these motifs within the protein sequences. This restraint reflects the observation that many known Cdk substrates contain multiple clustered phosphorylation sites. The present strategy defines a subset of the proteome that is highly enriched for Cdk substrates, as validated by comparing it to a set of bona fide, published, experimentally characterized Cdk substrates which was to our knowledge, comprehensive at the time of writing. To corroborate our model, we compared its predictions with three experimentally independent Cdk proteomic datasets and found significant overlap. Finally, we directly detected in vivo phosphorylation at Cdk motifs for selected putative substrates using mass spectrometry. 相似文献
14.
Limmongkon A Giuliani C Valenta R Mittermann I Heberle-Bors E Wilson C 《Biochemical and biophysical research communications》2004,324(1):382-386
Profilin is a small actin-binding protein and is expressed at high levels in mature pollen where it is thought to regulate actin filament dynamics upon pollen germination and tube growth. The majority of identified plant profilins contain a MAP kinase phosphorylation motif, P-X-T-P, and a MAP kinase interaction motif (KIM). In in vitro kinase assays, the tobacco MAP kinases p45(Ntf4) and SIPK, when activated by the tobacco MAP kinase kinase NtMEK2, can phosphorylate the tobacco profilin NtProf2. Mutagenesis of the threonine residue in this motif identified it as the site of MAP kinase phosphorylation. Fractionation of tobacco pollen extracts showed that p45(Ntf4) is found exclusively in the high-speed pellet fraction while SIPK and profilin are predominantly cytosolic. These data identify one of the first substrates to be directly phosphorylated by MAP kinases in plants. 相似文献
15.
Domain structure and phosphorylation of protein kinase C 总被引:18,自引:0,他引:18
The phospholipid- and calcium-dependent protein kinase C has been shown to autophosphorylate on both the catalytic and the regulatory domains. The autophosphorylation displays zero-order kinetics, indicating that it is an intramolecular event. Autophosphorylation increases the activity of protein kinase C by decreasing the Km for the substrate H1 histone. The catalytic fragment obtained by limited proteolysis can no longer autophosphorylate and has a reduced affinity for H1 histone, exhibiting a Km 5-fold higher than that of the intact enzyme. Monoclonal antibodies produced against the enzyme can distinguish between the catalytic fragment and the intact enzyme by inhibiting their activities in a specific manner. Evidence suggesting that dimerization of protein kinase C occurs upon activation is presented. 相似文献
16.
Interleukin-1 (IL-1) stimulation leads to the recruitment of interleukin-1 receptor-associated kinase (IRAK) to the IL-1 receptor, where IRAK is phosphorylated, ubiquitinated, and eventually degraded. Kinase-inactive mutant IRAK is still phosphorylated in response to IL-1 stimulation when it is transfected into IRAK-deficient cells, suggesting that there must be an IRAK kinase in the pathway. The fact that IRAK4, another IRAK family member necessary for the IL-1 pathway, is able to phosphorylate IRAK in vitro suggests that IRAK4 might be the IRAK kinase. However, we now found that the IRAK4 kinase-inactive mutant had the same ability as the wild-type IRAK4 in restoring IL-1-mediated signaling in human IRAK4-deficient cells, including NFkappaB-dependent reporter gene expression, the activation of NFkappaB and JNK, and endogenous IL-8 gene expression. These results strongly indicate that the kinase activity of human IRAK4 is not necessary for IL-1 signaling. Furthermore, we showed that the kinase activity of IRAK4 was not necessary for IL-1-induced IRAK phosphorylation, suggesting that IRAK phosphorylation can probably be achieved either by autophosphorylation or by trans-phosphorylation through IRAK4. In support of this, only the impairment of the kinase activity of both IRAK and IRAK4 efficiently abolished the IL-1 pathway, demonstrating that the kinase activity of IRAK and IRAK4 is redundant for IL-1-mediated signaling. Moreover, consistent with the fact that IRAK4 is a necessary component of the IL-1 pathway, we found that IRAK4 was required for the efficient recruitment of IRAK to the IL-1 receptor complex. 相似文献
17.
src kinase catalyzes the phosphorylation and activation of the insulin receptor kinase 总被引:7,自引:0,他引:7
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined. 相似文献
18.
Chun J Kwon T Kim DJ Park I Chung G Lee EJ Hong SK Chang SI Kim HY Kang SS 《Journal of biochemistry》2003,133(1):103-108
The mitogen-activated protein kinase kinase kinase 3 (MEKK3) is a member of the MAP kinase family whose cellular activity is elevated in response to growth factors, oxidative stress, and hyperosmolar conditions. MEKK3 regulates MKK3 and MKK5/6/7. MEKK3 is involved distinctively in the signal pathway for blocking cell proliferation and cell cycle progression, contradictory to the biological responses commonly associated with other members of MEKKs. Based information concerning the substrate specificity of serum- and glucocorticoid-induced kinase 1 (SGK1), R-x-R-x-x-(S/T)-phi, where phi indicates a hydrophobic amino acid, two putative phosphorylation sites (Ser(166) and Ser(337)) were found in MEKK3. It was shown that the recombinant MEKK3 protein and fluorescein-labeled MEKK3 peptides (FITC-(159)epRsRhlSVi(168) and FITC-(330)dpRgRlpSAd(339)) are phosphorylated by SGK1 in vitro. It was also observed that the intrinsic kinase activity of MEKK3 on Ser(189) of MKK3 (equivalent to Ser(207) of MKK6) decreased along with phosphorylation of Ser(166) and Ser(337) in MEKK3 in vitro and in vivo. Therefore, it is suggested that SGK1 inhibits MEKK3-MKK3/6 signal transduction by phosphorylation of MEKK3. 相似文献
19.
Roles of mitogen-activated protein kinase signal-integrating kinases 1 and 2 in oxidant-mediated eIF4E phosphorylation 总被引:1,自引:0,他引:1
Shenberger JS Zhang L Hughlock MK Ueda T Watanabe-Fukunaga R Fukunaga R 《The international journal of biochemistry & cell biology》2007,39(10):1828-1842
Oxidative stress alters cellular metabolic processes including protein synthesis. The eukaryotic initiation factor, eIF4E, acts in the rate-limiting steps of initiation and promotes nuclear export. Phosphorylation of eIF4E by mitogen activated protein kinase signal-integrating kinases 1 and 2 (Mnk) influences the affinity of eIF4E for the 5'-mRNA cap and fosters nuclear export activity. Although phosphorylation of eIF4E on Ser209 is observed following oxidant exposure, the contribution of Mnk isoforms and the significance of phosphorylation remain elusive. Using a Mnk inhibitor and fibroblasts derived from Mnk knockout mice, we demonstrate that that H2O2 enhances eIF4E phosphorylation in cells containing Mnk1. In contrast, cells containing only Mnk2 show little change or a decrease in eIF4E phosphorylation in response to H2O2. H2O2 also shifted eIF4GI protein from the nucleus to the cytoplasm suggesting that the increases in eIF4E phosphorylation may reflect enhanced substrate availability to cytoplasmic Mnk1. In Mnk1(+/+) cells, H2O2 also enhanced eIF4E phosphorylation in the nucleus to a greater degree than in the cytoplasm, an effect not observed in cells containing Mnk2. In response to H2O2, all MEFs showed increased eIF4E:4E-BP1 and 4E-BP2:eIF4E binding and reduced eIF4E:eIF4GI binding. We also observed a dramatic increase in the amount of Mnk1 associated with eIF4E following affinity chromatography. These changes coincided with a smaller reduction in global protein synthesis in response to H2O2 in the DKO cells. These findings suggest that changes in eIF4GI distribution may enhance eIF4E phosphorylation and that the presence of either Mnk1 or 2 or any degree of eIF4E phosphorylation negatively regulates global protein synthesis in response to oxidant stress. 相似文献
20.
B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1 总被引:4,自引:0,他引:4
Zhang H Shi X Paddon H Hampong M Dai W Pelech S 《The Journal of biological chemistry》2004,279(34):35726-35734
Phosphoprotein profiling by Kinetworks trade mark analysis of M-phase-arrested HeLa cells by nocodazole treatment revealed that a novel mitosis-specific phosphorylation event occurred in the nucleolar protein B23/nucleophosmin at a conserved Ser-4 residue. Consistent with the resemblance of the Ser-4 phosphorylation site to the Polo-like kinase 1 (Plk1) consensus recognition sequence, inhibition of Plk1 by a kinase-defective mutation (K82M) abrogated B23 Ser-4 phosphorylation, whereas activation of Plk1 by a constitutively active mutation (T210D) enhanced its phosphorylation following in vivo transfection and in vitro phosphorylation assays. Depletion of endogenous Plk1 by RNA interference abolished B23 Ser-4 phosphorylation. The physical interaction of Plk1 and B23 was further demonstrated by their co-immunoprecipitation and glutathione S-transferase fusion protein pull-down assays. Interference of Ser-4 phosphorylation of B23 induced multiple mitotic defects in HeLa cells, including aberrant numbers of centrosomes, elongation and fragmentation of nuclei, and incomplete cytokinesis. The phenotypes of B23 mutants are reminiscent of a subset of those described previously in Plk1 mutants. Our findings provide insights into the biochemical mechanism underlying the role of Plk1 in mitosis regulation through the identification of Ser-4 in B23 as a major physiological substrate of Plk1. 相似文献