首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine serum albumin (BSA) and fetal calf serum (FCS) were evaluated as protein supplements for in vitro maturation and fertilization of oocytes from cows and hamsters. BSA and low doses of FCS (0.1 or 1.0%) did not support viability or maturation of the cumulus-oocyte complex as well as higher doses of FCS (5, 10, or 20%) for either species. BSA failed to support cumulus expansion for bovine or hamster cumulus-oocyte complexes. All doses of FCS examined supported cumulus expansion in bovine cumulus-oocyte complexes, whereas the hamster complexes required at least 1.0% FCS to induce cumulus expansion. The addition of a serum filtrate, Solcoseryl, with BSA improved viability of the cumulus in the bovine but did not support cumulus expansion or completion of Meiosis I in bovine complexes. In vitro fertilization could be accomplished in media containing FCS by increasing the heparin concentration in the bovine system or reducing FCS for the hamster system. Polyspermy was increased when FCS was the protein supplement. It is not known whether this is an interaction of FCS with the sperm or oocyte. In conclusion, FCS was found necessary for follicle-stimulating-hormone (FSH)-induced cumulus expansion. It also improved cumulus cell viability and completion of the first meiotic division in complexes of both species compared with BSA.  相似文献   

2.
《Reproductive biology》2022,22(1):100593
Cumulus cell expansion is required for the ovulation of a fertilizable oocyte. Extracellular vesicles (EVs) are bilayer-lipid membrane vesicles that may be found in a variety of bodily fluids and play an important role in biological processes. This study aimed to examine the effects of plasma-derived EVs on cumulus expansion and in vitro maturation (IVM) of the oocyte. EVswere isolated using ultracentrifugation from the plasma of female mice. The morphology and size of EVs were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Western blotting allowed us to identify CD63, CD81, CD9, and HSP70 protein markers of EVs; the expression of the genes related to cumulus cell expansion, including hyaluronan synthase 2 (Has2) and prostaglandinendoperoxide synthase 2 (Ptgs2), were assessed using real-time polymerase chain reaction. Plasma-derived EVs labeled with Dil dye were successfully incorporated with cumulus cells during IVM. Plasma-derived EVs significantly induced cumulus expansion and maturation of oocytes. The percentage of oocytes that reached the MII stage was significantly greater in the EVs treatment group compared with other groups. Although treatment with epidermal growth factor (EGF) significantly increased cumulus expansion in cumulus-oocyte complexes (COCs), the impact was less than that seen with plasma-derived EVs. Furthermore, EVs generated from plasma substantially enhanced Has2 and Ptgs2 mRNA expression in the cumulus-oocyte complex. This research indicates that EVs derived from plasma are capable of promoting cumulus expansion and oocyte maturation.  相似文献   

3.
At the time of fertilization, release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm of oocytes is said to be induced by hydrolysis of phosphatidylinositol bis phosphate (PI2) via activation of phospholipase C and is responsible for the Ca2+ oscillation in oocytes immediately after sperm penetration. On the other hand, cumulus cells have been reported to play an important role in cytoplasmic maturation of mammalian oocytes and to affect embryonic development after fertilization. To obtain more information on the role of cumulus cells in cytoplasmic maturation of oocytes, the effects of cumulus cells on the rise in [Ca2+]i and the rates of activation and development of porcine mature oocytes induced by IP3 injection were investigated. Mature porcine oocytes that had been denuded of their cumulus cells in the early stage of the maturation period had a depressed rise in [Ca2+]i (4.0-6.0) and reduced rates of activation (31.4-36.8%) and development (10.0-24.4%) induced by IP3 injection compared with those of their cumulus-enclosed counterparts (7.3, 69.1% and 43.8%; P < 0.05). The [Ca2+]i rise and the rates of activation and development depressed by the removal of cumulus cells were restored by adding pyruvate to the maturation medium. Furthermore, the IP3 injection-induced depression of [Ca2+]i rise in mature oocytes derived from cumulus-denuded oocytes (DOs) was restored when they were cultured in a medium with pyruvate (3.9-6.3, P < 0.05). Also, mature oocytes from cumulus-oocyte complexes (COCs) cultured in a medium without glucose had a lower rise in [Ca2+]i than that in mature oocytes from COCs cultured with glucose (7.4-6.0, P < 0.05). Cumulus cells supported porcine oocytes during maturation in the rise in [Ca2+]i induced by IP3 and the following activation and development of porcine oocytes after injection of IP3. Moreover, we inferred that a function of cumulus cells is to produce pyruvate by metabolizing glucose and to provide oocytes with pyruvate during maturation, thereby promoting oocyte sensitivity to IP3.  相似文献   

4.
The timing of the reduction of cumulus cell-oocyte coupling was correlated with oocyte meiotic maturation and the expansion (mucification) of the cumulus oophorus using immature mice treated with gonadotropins. Three hours after the injection of an ovulatory dose of human chorionic gonadotropin (hCG), more than 90% of the oocytes isolated from large Graafian follicles had undergone germinal vesicle breakdown, indicating that oocyte meiotic maturation had been initiated. However, no cumulus expansion or reduction of intercellular coupling was detected at this time. By 6 hr after hCG injection, the index of oocyte-cumulus cell coupling was still not less than that found in oocyte-cumulus cell complexes isolated from control mice not receiving hCG. Cumulus expansion at 6 hr post-hCG was limited to the outer cumulus cells while those adjacent to the oocyte were still tightly packed. Cumulus expansion appeared complete by 9 hr after hCG injection and the cumulus cell-oocyte coupling index was greatly reduced. These results show that oocyte meiotic maturation in the mouse is not initiated by a reduction in cumulus cell-oocyte coupling or by cumulus expansion. However, the results suggest that the reduction of intercellular coupling in vivo may be a result of cumulus expansion.  相似文献   

5.
The resumption of oocyte meiosis in mammals encompasses the landmark event of oocyte germinal vesicle (GV) breakdown (GVBD), accompanied by the modification of cell-to-cell communication and adhesion between the oocyte and surrounding cumulus cells. The concomitant cumulus expansion relies on microfilament-cytoskeletal remodeling and extracellular matrix (ECM) deposition. We hypothesized that this multifaceted remodeling event requires substrate-specific proteolysis by the ubiquitin-proteasome pathway (UPP). We evaluated meiotic progression, cytoskeletal dynamics, and the production of cumulus ECM in porcine cumulus-oocyte complexes (COCs) cultured with or without 10-200 microM MG132, a specific proteasomal inhibitor, for the first 22 h of in vitro maturation, followed by 22 h of culture with or without MG132. Treatment with 10 microM MG132 arrested 28.4% of oocytes in GV stage (vs. 1.3% in control), 43.1% in prometaphase I, and 16.2% in metaphase I, whereas 83.7% of control ova reached metaphase II (0% of MG132 reached metaphase II). The proportion of GV-stage ova increased progressively to >90% with increased concentration of MG132 (20-200 microM). Furthermore, MG132 blocked the extrusion of the first polar body and degradation of F-actin-rich transzonal projections (TZP) interconnecting cumulus cells with the oocyte. The microfilament disruptor cytochalasin E (CE) prevented cumulus expansion but accelerated the breakdown of TZPs. Ova treated with a combination of 10 microM MG132 and 10 microM CE underwent GVBD, despite the inhibition of proteasomal activity. However, 90.0% of cumulus-free ova treated with 10 microM MG132 remained in GV stage, compared with 16.7% GV ova in control. Cumulus expansion, retention of hyaluronic acid, and the deposition of cumulus ECM relying on the covalent transfer of heavy chains of inter-alpha trypsin inhibitor (IalphaI) were also inhibited by MG132. Cumulus expansion in control COCs was accompanied by the degradation of ubiquitin-C-terminal hydrolase L3, an important regulator of UPP. RAC1, a UPP-controlled regulator of actin polymerization was maintained at steady levels throughout cumulus expansion. We conclude that proteasomal proteolysis has multiple functions in the progression of oocyte meiosis beyond GV and metaphase I stage, polar body extrusion, and cumulus expansion.  相似文献   

6.
The energy substrates lactate, pyruvate, and glucose were evaluated for supporting in vitro cytoplasmic maturation of rhesus monkey oocytes. A total of 321 cumulus-oocyte complexes (COCs) aspirated from > or = 1000 microm diameter follicles of unstimulated adult monkeys were matured in one of six media with various individual or combinations of energy substrates: (1) mCMRL-1066 (control); (2) HECM-10 (containing 4.5 mM lactate); (3) HECM-10+0.2 mM pyruvate; (4) HECM-10 + 5.0 mM glucose; (5) HECM-10+ 0.2 mM pyruvate + 5.0 mM glucose; and (6) HECM-10 minus lactate + 5.0 mM glucose. All media contained gonadotropins, oestradiol, and progesterone. Following maturation, all mature oocytes were subjected to the same in vitro fertilization and embryo culture procedures. Oocytes matured in control medium or in treatment groups 4 and 6 had the best morulae+ blastocysts developmental responses (35, 36, and 32%, respectively, P < 0.05). HECM-10 + 0.2 mM pyruvate + 5.0 mM glucose for COC maturation supported intermediate embryonic development (16% morulae + blastocysts). The lowest (P < 0.05) morula + blastocyst developmental responses were obtained after maturation of COCs in HECM-t10 and HECM-10 + 0.2 mM pyruvate (4 and 6%, respectively). The COCs matured in glucose-containing medium showed greater levels of cumulus expansion than those in glucose-free medium. These results indicate that (a) glucose is both necessary and sufficient as the energy substrate for supporting optimal cytoplasmic maturation in vitro of oocytes from unstimulated rhesus monkeys; (b) pyruvate suppresses the stimulatory effect of glucose on oocyte maturation; (c) glucose is involved in cumulus expansion; (d) cumulus expansion is not a reliable indicator of primate oocyte competence.  相似文献   

7.
The objective of this study was to determine if thyroid stimulating hormone (TSH) could induce cumulus expansion in mouse oocytes in-vitro. The effect of TSH was compared with the effects of LH and FSH. Oocytes were incubated in minimum essential medium (MEM) with and without hormones for 16 h at 37 degrees C under a humidified atmosphere of 5% CO(2) and 95% air. Then LH, FSH or TSH was added into the culture medium at a concentration of 0.25, 0.5, or 1.0 mug/ml, respectively. Cumulus expansion was scored in a subjective manner (O = no expansion; + = slight; ++ = moderate; +++ = maximum expansion) 16 h after addition of the hormones. The percentage of oocytes in the 4 categories of expansion was noted; LH failed (P>0.05) to induce cumulus expansion while TSH and FSH induced cumulus expansion (P<0.05) at all of the doses tested. For FSH, the 0.5 mug/ml dose showed the best response (26% = 0; 18% = +; 10% = ++; 46% = +++). For TSH, the 1.0 mug/ml dose showed the best response (38% = 0; 18% = +; 13% = ++; 31% = +++).  相似文献   

8.
The objective of this study was to test the hypothesis that incubating equine cumulus-oocyte complexes (COCs) in medium containing 50% or 100% homologous preovulatory follicular fluid would improve cumulus expansion and nuclear maturation. Oocytes were incubated in one of three media: 1) supplemented TCM-199 (control), 2) 50% (v/v) follicular fluid in control medium or 3) 100% follicular fluid. Cumulus expansion was evaluated subjectively, and nuclear maturation was evaluated by staining oocytes with Hoechst 33258. The hypothesis that incubating COCs in medium containing follicular fluid would improve cumulus expansion was supported. More (P < 0.05) compact COCs incubated in 50% or 100% follicular fluid developed a moderately to completely expanded cumulus after 24 and 36 h of incubation and more (P < 0.05) expanded COCs incubated in 100% follicular fluid developed a moderately to completely expanded cumulus after 36 h of incubation compared to control medium. The hypothesis that incubating COCs in medium containing follicular fluid would improve nuclear maturation was not supported. Although more (P < 0.05) compact COCs incubated in 50% follicular fluid reached polar body-stage compared to those in control medium, the nuclear maturation rate in the control medium was lower than it was when the same medium was used in a preliminary experiment (described in main text); therefore, the apparent superiority of 50% follicular fluid must be interpreted cautiously. Based on these results, future studies are warranted to further address the value of adding preovulatory follicular fluid to equine IVM culture systems.  相似文献   

9.
The activation characteristics of Mg-ATP and Ca2+ on cardiac and skeletal muscle myofibril ATPase activity were studied in rats following a run to exhaustion. In addition, the effect of varying ionic strength was determined on skeletal muscle from exhausted animals. The exhausted group (E) ran at a speed of 25 m min-1 with an 8% incline. Myofibril ATPase activities for control (C) and E were determined with 1, 3 and 5 mM Mg-ATP and 1 and 10 microM Ca2+ at pH 7.0 and 30 degrees C. For control skeletal muscle, at 1 and 10 microM Ca2+, there was an increase in ATPase activity from 1 to 5 mM Mg-ATP (P less than 0.05). For E animals the myofibril ATPase activities at 10 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ the activities at 3 and 5 mM Mg-ATP were greater for the E animals (P less than 0.05). Increasing KCl concentrations resulted in greater inhibition for E animals. With cardiac muscle, the myofibril ATPase activities at 1.0 microM free Ca2+ were lower for E at all Mg-ATP levels (P less than 0.05). In contrast, at 10 microM Ca2+, the E group exhibited an elevated myofibril ATPase activity. The results indicate that Mg-ATP and Ca2+ activation of cardiac and skeletal muscle myofibril ATPase is altered with exhaustive exercise.  相似文献   

10.
Calmodulin antagonists inhibit secretion in Paramecium   总被引:6,自引:4,他引:2       下载免费PDF全文
Secretion in Paramecium is Ca2+-dependent and involves exocytic release of the content of the secretory organelle, known as the trichocyst. The content, called the trichocyst matrix, undergoes a Ca2+-induced reordering of its paracrystalline structure during release, and we have defined three stages in this expansion process. The stage I, or fully condensed trichocyst, is the 4 microns-long membrane-bounded form existing prior to stimulation. Stage II, the partially expanded trichocyst, we define as an intermediate stage in the transition, preceding stage III, the fully expanded extruded form which is a 20-40 microns-long needlelike structure. These stages have been used to assay the effects of trifluoperazine (TFP) and W-7, calmodulin (CaM) antagonists, on trichocyst matrix expansion in vivo. TFP and W-7 are shown to reversibly block matrix release induced by picric acid. Ultra-structural examination reveals that one effect of this inhibition is reflected in the organelles themselves, which are prevented from undergoing the stage I-stage II transition by preincubation in 14 microM TFP or 35 microM W-7 before fixation. This inhibition of expansion by TFP can be moderated but not abolished by high extracellular Ca2+ (5 mM). The moderation by high Ca2+ can be eliminated by raising TFP concentration to 20 microM. A possible explanation for the ability to titrate the inhibition in this manner is that TFP is acting to block expansion by binding to the Ca2+-CaM complex. Brief exposure of cells to the Ca2+ ionophore A23187 and 5 mM Ca2+ following TFP treatment promotes matrix expansion, although in 14 microM TFP a residual level of inhibition remains. These results suggest that, following stimulation, CaM regulates secretion in Paramecium, possibly by controlling the Ca2+-dependent matrix expansion which accompanies exocytosis in these cells.  相似文献   

11.
The role of the calcium messenger system in the regulation of ion absorption across the teleost intestine was studied using pharmacological intervention. Radiochloride transport was independent of external Ca2+ over the range 10 microM to 2.5 mM. Treatment with the Ca2+ ionophore A23187 (to hyperpolarization of the apical membrane potential of intestinal epithelial cells. The Ca2+-calmodulin antagonists trifluoperazine (TFP) and calmidazolium (R24571) produced opposite effects, i.e., stimulation of Cl- absorption and cellular depolarization. Treatment with TFP or R24571 will block or override the inhibitory action of A23187. These data suggest a regulatory role for Ca2+ in the control of intestinal NaCl absorption and mediation via calmodulin.  相似文献   

12.
Calmodulin was purified from human tonsillar lymphocytes utilizing calcium-dependent binding of calmodulin to fluphenazine-Sepharose. The molecular weight and phosphodiesterase activation of the lymphocyte calmodulin were very similar to those of purified bovine brain calmodulin. Trifluoperazine (TFP), a calmodulin inhibitor, suppressed lymphocyte stimulation as assessed by 3H-thymidine incorporation into DNA of lectin-stimulated lymphocytes. TFP had no effect on the early 45Ca2+ uptake induced by mitogenic lectins, although this latter was inhibited by verapamil which also suppressed the 3H-thymidine incorporation. The results are in keeping with the interpretation that the inhibition of T cell stimulation by TFP was not due to suppression of Ca2+ uptake, but due to inactivation of Ca(2+)-calmodulin complex which might be formed subsequent to Ca2+ entry into the cell.  相似文献   

13.
Cumulus oophorus, an investing structure unique to oocytes of higher mammals, is induced to synthesize an extensive extracellular matrix by ovulatory stimulus, leading to the characteristic preovulatory expansion of the cumulus-oocyte complex. The extracellular matrix consists of cumulus cell-secreted hyaluronan, proteoglycans and proteins, as well as extrafollicularly originated SHAPs (serum-derived hyaluronan-associated proteins) that are bound covalently to hyaluronan. The secretion and assembly of matrix molecules by cumulus cells are temporally regulated by factors derived from both mural granulosa cells and oocyte, which synchronize the deposition of the cumulus oophorus matrix with other intrafollicular ovulatory events. The cumulus oophorus matrix is essential for ovulation and subsequent fertilization. Recently, taking advantage of animal models with defined genetic modifications, it has become possible to investigate in vivo the structure of the cumulus oophorus matrix, the regulatory mechanism for matrix deposition and its biological functions. This review focuses on the recent findings on the construction of the cumulus oophorus matrix and the regulation.  相似文献   

14.
Heterologous intercellular communication was determined qualitatively by lucifer yellow dye transfer and quantitatively by transfer of radiolabeled uridine metabolites and electrical current in hamster oocyte-cumulus complexes during meiotic maturation in vitro and in vivo. In addition, changes in cell resting potentials during maturation were recorded. Significantly less time was required for germinal vesicle breakdown (GVBD) in oocytes matured in vitro than in oocytes stimulated in vivo (1.81 +/- 0.06 hr, N = 13 vs 2.46 +/- 0.07 hr, N = 18, respectively, P less than 0.001). Resting potentials of the oocyte (RP-o) and cumulus cells (RP-c) significantly increased contemporaneously with GVBD in vitro (RP-o: from -18.9 +/- 3.2 mV to -33.2 +/- 2.9 mV, P less than 0.001; RP-c: from -16.3 +/- 1.9 mV to -27.5 +/- 2.6 mV, P less than 0.001) and in vivo after hCG injection (RP-o: from -16.8 +/- 5.9 mV to -30.1 +/- 3.9 mV, P less than 0.001; RP-c: from -15.5 +/- 3.8 mV to -26.3 +/- 3.2 mV, P less than 0.001). RP-o and RP-c progressively increased with time of culture up to 7 hr (maximum time examined) while the values reached maxima in in vivo matured oocytes 4.5 hr post-hCG and subsequently declined concomitant with the onset of cumulus expansion. Cumulus to oocyte coupling decreased progressively with time after release from meiotic arrest both in vitro and in vivo, as assessed by a progressive reduction in transfer of either uridine marker or lucifer yellow from the cumulus cell to the oocyte. By 4.5 hr after hCG injection, cumulus expansion had begun in 100% of complexes examined. Expansion was extensive by 7 hr post-hCG and spread of lucifer yellow from a cumulus cell was limited to very few adjacent cumulus cells. Oocyte to cumulus cell metabolic coupling also decreased progressively with time in both treatment groups. Examination of the extent of heterologous ionic coupling revealed that ionic coupling exhibited biphasic and, bidirectionally parallel, increases during meiotic maturation. While these temporal changes were observed in both groups, the coupling ratios were much greater in those complexes matured in vitro than in vivo. These results show that dye, metabolic, and electrical coupling exist between the immature hamster oocyte and its surrounding cumulus cells but that during the early stages of meiosis, metabolic and dye coupling decrease, while electrical coupling increases biphasically.  相似文献   

15.
As an important biological messenger, nitric oxide (NO) exhibits a wide range of effects during physiological and pathophysiological processes, including mammalian oocyte meiotic maturation. The present study investigated whether NO derived from two nitric oxide synthase (NOS) isoforms, inducible NOS (iNOS) or endothelial NOS (eNOS), is involved in the meiotic maturation of porcine oocytes. Meanwhile, the cumulus cells' function in meiotic maturation and their interaction with oocyte development and degeneration were also investigated using cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs). Different inhibitors for NOS were supplemented to the medium. Cumulus expansion, cumulus cell DNA fragmentation and oocyte meiotic resumption were evaluated 48 h after incubation. Aminoguanidine (AG), a selective inhibitor for iNOS, suppressed cumulus expansion and inhibited CEOs to resume meiosis (p < 0.05), but did not inhibit cumulus cell DNA fragmentation. Both Nomega-nitro-L-arginine (L-NNA) and Nomega-nitro-L-arginine methyl ester (L-NAME), inhibitors for both iNOS and eNOS, delayed cumulus expansion, inhibited cumulus cell DNA fragmentation and inhibited CEOs to resume meiosis. Such effects were not seen in DOs. These results indicate that iNOS-derived NO is necessary for cumulus expansion and meiotic maturation by mediating the function of the surrounding cumulus cells, and eNOS-derived NO is also involved in porcine meiotic maturation.  相似文献   

16.
The purpose of this study was to determine ultrastructural and cytoskeletal changes that result from vitrification of porcine germinal vesicle- (GV-) and meiosis II- (MII-) stage oocytes. To investigate the effects of vitrification on developmental competence, oocytes were divided into three groups: fresh GV-oocytes (control), vitrified GV-oocytes, and vitrified MII-oocytes. In both GV- and MII-oocytes, vitrification resulted in a high proportion with normal morphology (92.4 vs. 94.2%, P > 0.05), while vitrified GV-oocytes yielded a higher survival rate than did vitrified MII-oocytes (56.8 vs. 41.9%, P < 0.05). In vitrified GV-oocytes, 12 of 154 oocytes underwent cleavage after fertilization in vitro, and 6 of these developed to the 8-cell stage, 3 developed to the 16-cell stage, and 3 developed into morulae. No cleavage was obtained from vitrified MII-oocytes. For ultrastructural analysis of oocytes, fresh and vitrified-warmed GV- and MII-oocytes were randomly selected for transmission electron microscopy (TEM). Results showed that vitrification caused various degrees of cryodamage in GV-oocytes. Cumulus cells of some oocytes were separated from the cumulus-oocyte complex (COC), and the zona pellucida adjacent to cumulus cells was fractured. The gap junctions between cumulus cells were ruptured, and many microvilli were disrupted or disappeared. Only homogeneous lipid droplets were observed. After vitrification, cortical granules still lined the oolemma of MII-oocytes. Only morphologically irregular, nonhomogeneous lipid droplets surrounding large vacuoles were found. To examine cytoskeletal structures, fresh and vitrified-warmed MII-oocytes were analyzed by laser-scanning confocal microscopy (LSCM); vitrified-warmed GV-oocytes were cultured for 42-44 hr before LSCM. Of 58 control oocytes, 79.5% displayed normal spindles with chromosomes aligned along the equatorial plate. In vitrified oocytes the percentage with normal spindle organization was decreased significantly in both vitrified GV-oocytes and MII-oocytes (10.1 and 12.9%, respectively, P < 0.05). The proportion of oocytes with normal distribution of F-actin was lower for vitrified GV- and MII-oocytes than for controls (16.9 and 37.2% vs. 72.3%). Results of this experiment suggest that irreversible damage to the cytoskeleton of porcine GV- and MII-oocytes after vitrification could be an important factor affecting developmental competence.  相似文献   

17.
The present study showed that treatment with a cell membrane-impermeable metal ion chelator, EDTA, of porcine oocytes at the germinal vesicle (GV) stage collected from follicles 2-6 mm in diameter induced artificial activation followed by formation of a pronucleus (PN). When the oocytes were cultured for 48 h in medium containing 0.1 to 2 mM EDTA disodium salt (Na-EDTA), they were activated to form PN, and the maximum PN formation rate (63%, n = 68) was achieved in oocytes cultured with 1 mM Na-EDTA. More than 90% of oocytes activated by 1 mM Na-EDTA treatment formed 1 PN without emission of the first and the second polar bodies (PB). This result suggests that EDTA at 1 mM may force the maturing (meiosis I) oocytes to form a PN without chromosome segregation. When oocytes at the GV stage that had been cultured with 1 mM Na-EDTA for 48 h were further cultured in 0.4% BSA-containing NCSU23 medium for 144 h, blastocysts that appeared to be morphologically normal were formed at the rate of 10%, whereas no blastocysts were formed from oocytes that had not been cultured with Na-EDTA. Next we examined the effects of Ca2+, Zn2+, Fe3+, or Cu2+-saturated EDTA (Ca-EDTA, Zn-EDTA, Fe-EDTA, and Cu-EDTA, respectively), and a Ca2+-specific chelator, EGTA, at a concentration of 1 mM. The Ca-EDTA, Fe-EDTA, and Cu-EDTA, but not Zn-EDTA or EGTA, had the ability to activate the oocytes. From these results, it is suggested that extracellular chelation of Zn2+ with EDTA of maturing (meiosis I) porcine oocytes results in parthenogenetic activation of the oocytes, which induces PN formation followed by development to blastocysts.  相似文献   

18.
The aim of the present study was to examine the growth and survival in culture, and the subsequent meiotic competence, of bovine oocytes recovered from early antral ovarian follicles. Follicles isolated by microdissection of the ovarian slices were sorted into two size groups: (I) 0.2-0.5 mm diameter; and (II) 0.4-0.7 mm diameter. Group I follicles were cultured intact while in Group II, cumulus-oocyte complexes with pieces of parietal granulosa were dissected from the follicles and cultured. Follicles or cumulus-oocyte complexes with parietal granulose were embedded in collagen gel and cultured in TCM 199 supplemented with 3% BSA and 4 mM hypoxanthine for 14 days (Group I) or 7-10 days (Group II). After this, cumulus-oocyte complexes were recovered from the gel. Oocytes that had lost the majority of the cumulus were fixed immediately after recovery. Cumulus-oocyte complexes showing normal morphology were either fixed immediately or were subjected to IVM for an additional 24h, and then were fixed. At the end of the growth culture, 57.6% of the compact COCs in Group I follicles were preserved in the GV configuration, 16.7% had resumed meiosis, and 25.8% were degenerated or did not show detectable chromatin. After IVM, the proportion of oocytes resuming meiosis increased significantly (from 16.7% versus 42.7%; P < 0.05), and 9.1% of all oocytes had reached TI or MII. The isolated cumulus-oocyte complexes in Group II began creating follicle-like structures following 24 h of growth culture (7.1%). The proportion of these structures reached 50.8% on days 2-3, and then gradually decreased due to degeneration. On day 10 only 5.8% of cumulus-oocyte complexes were classified as intact. Of the cumulus intact oocytes recovered from the newly created follicle-like structures at 7-10 days, 54.7% were in the germinal vesicle stage, 31.0% underwent germinal vesicle breakdown, 14.3% were degenerated or the chromatin configuration was not detectable. After 24 h of IVM, 67.6% of oocytes had resumed meiosis, and 21.6% of all oocytes had reached TI and MII. These results show that isolated early follicles and cumulus-oocyte complexes from intact early antral follicles can grow in culture and can develop meiotic competence.  相似文献   

19.
A protein kinase-substrate complex was precipitated by adding Ca2+ to the cytosol fraction of AH-66 ascites hepatoma cells. The amount of the precipitated complex was increased with increasing concentrations of Ca2+ and reached a plateau at about 5 mM Ca2+. In the presence of [gamma-32P]ATP, extensive uptake of radioactive phosphate into this complex occurred. The phosphorylation reaction was little affected by addition of cyclic nucleotides, Ca2+-phospholipid, Ca2+-calmodulin. When the complex after phosphorylation was analyzed by SDS-PAGE, a protein with molecular weight of 33,000 was most heavily phosphorylated. These phenomena were also observed for mouse myeloid leukemia cells (M1 cells). By contrast, the addition of Ca2+ to the cytosol fractions of regenerating rat liver, normal rat liver or brain caused little precipitation of the complex.  相似文献   

20.
During oocyte maturation, the cumulus-oocyte complexes (COCs) expand dramatically. This phenomenon, which is known as cumulus expansion, is the result of the synthesis and accumulation of hyaluronan in the extracellular space between cumulus cells. The purpose of this study was to investigate the effect of 6-diazo-5-oxo-l-norleucine (DON), an inhibitor of hyaluronan synthesis, on cumulus expansion during in vitro porcine oocyte maturation and hyaluronan accumulation within COCs. Further, this study aimed to examine the influence of hyaluronan accumulation within COCs on the rate of oocyte maturation. Cumulus expansion was observed during in vitro maturation. However, the addition of DON to the maturation medium significantly inhibited cumulus expansion. The total inhibition of hyaluronan accumulation within COCs was observed with the use of confocal microscopy. Moreover, a positive correlation between the area of cumulus expansion and the rate of oocyte maturation was observed. These results demonstrate that the hyaluronan accumulation within the COCs during oocyte maturation affects oocyte maturation. On the basis of these results, we propose that hyaluronan accumulation within the COCs during cumulus expansion is a necessary step in the porcine oocyte maturation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号