首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Transfer RNAs have been prepared from control and regenerating rat skeletal muscle. The yield of tRNA is highest during the early stages of the regeneration process (5 and 8 days following the induction of regeneration) and decreases to near control values thereafter. The amino acid acceptor activity (extent of aminoacylation) of tRNA from regenerating muscle was also found to be higher for some amino acids than the activity of control tRNA, and the maximum increase in activity was observed between 5 and 8 days following the initiation of regeneration with a decrease to control levels through 15 and 30 days. The isoacceptor pattern, determined by RPC-5 chromatography, for methionyl-tRNAs from control muscle and 5-day regenerating muscle were essentially indistinguishable, while a minor peak of prolyl-tRNA was observed in the population from 5-, 8- and 15-day regenerates which was apparently absent from the control tRNA. Lysyl-tRNAs from control muscle contain two major isoacceptors while a third isoacceptor is observed in the tRNA preparations from 5-, 8- and 15-day regenerating muscle. The relative amount of this third isoacceptor is highest in the 8-day population and decreases in amount in tRNAs from 15- and 30-day regenerates. Control muscle also contains two major glutamyl-tRNA species while a third isoacceptor can be detected in regenerates. The relative amount of this species increases during the early course of the regeneration process but is present at near control levels by 30 days following Marcaine injection. Cell-free protein synthesis using muscle polyribosomes showed that tRNAs from regenerating muscle were more effective in stimulating [35S]methionine incorporation than tRNAs from control muscle.  相似文献   

4.
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl‐tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl‐tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non‐canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.  相似文献   

5.
Transfer RNA (tRNA)-derived small RNAs (tsRNAs), a novel category of small noncoding RNAs, are enzymatically cleaved from tRNAs. Previous reports have shed some light on the roles of tsRNAs in the development of human diseases. However, our knowledge about tsRNAs is still relatively lacking. In this paper, we review the biogenesis, classification, subcellular localization as well as action mechanism of tsRNAs, and discuss the association between chemical modifications of tRNAs and the production and functions of tsRNAs. Furthermore, using immunity, metabolism, and malignancy as examples, we summarize the molecular mechanisms of tsRNAs in diseases and evaluate the potential of tsRNAs as new biomarkers and therapeutic targets. At the same time, we compile and introduce several resource databases that are currently publicly available for analyzing tsRNAs. Finally, we discuss the challenges associated with research in this field and future directions.Subject terms: Oncogenes, Non-coding RNAs  相似文献   

6.
《FEBS letters》2014,588(23):4297-4304
Transfer RNA (tRNA) is traditionally considered to be an adaptor molecule that helps ribosomes to decode messenger RNA (mRNA) and synthesize protein. Recent studies have demonstrated that tRNAs also serve as a major source of small non-coding RNAs that possess distinct and varied functions. These tRNA fragments are heterogeneous in size, nucleotide composition, biogenesis and function. Here we describe multiple roles that tRNA fragments play in cell physiology and discuss their relevance to human health and disease.  相似文献   

7.
Ribosome-associated noncoding (ranc) RNAs are a novel class of short regulatory RNAs with functions and origins that have not been well studied. In this present study, we functionally characterized the molecular activity of Saccharomyces cerevisiae transfer RNA (tRNA)-derived fragments (tRFs) during protein biosynthesis. Our results indicate ribosome-associated tRFs derived from both 5′ (ranc-5′-tRFs) and 3′-part of tRNAs (ranc-3′-tRFs) have regulatory roles during translation. We demonstrated five 3′-tRFs and one 5′-tRF associate with a small ribosomal subunit and aminoacyl-tRNA synthetases (aa-RSs) in yeast. Furthermore, we discovered that four yeast aa-RSs interact directly with yeast ribosomes. tRFs interactions with ribosome-associated aa-RSs correlate with impaired efficiency of tRNA aminoacylation.  相似文献   

8.
来源于tRNA的小分子RNA——降解碎片还是新的调控分子   总被引:1,自引:0,他引:1  
具有经典三叶草结构的tRNA作为细胞蛋白质合成机器的重要元件,已经拥有几十年深入细致的研究历史.但是,对于其功能的认识远没有止境,尤其在其作为潜在的基因表达调控分子前体的功能目前正逐渐被人们认识.最新的多项研究结果表明,在多种细胞系中通过高通量测序发现某种来源于tRNA的小片段RNA,这些剪切产物被认为与多种microRNA加工体系关键分子(如Dicer、Ago家族中的蛋白质)具有相互作用的能力.同时,报告基因检测系统的研究结果也暗示,这些小片段RNA具有类似microRNA的潜在调控功能,可能在细胞应对外界环境刺激时发挥重要的调节作用.如其具体的作用机制能够被更多的实验结果阐明,将极大地扩展我们对于非编码RNA调控功能的认识.  相似文献   

9.
周瑞  王以鑫  龙科任  蒋岸岸  金龙 《遗传》2018,40(4):292-304
骨骼肌是维持机体功能必不可少的组织,与家养动物的产肉率等重要经济性状密切相关。近年来,高通量测序鉴定了大量与骨骼肌生成相关的长链非编码RNA (long non-coding RNA, lncRNA),它们可作为调节因子在表观调控、转录调控以及转录后调控等多个层面调控基因表达。lncRNA通过靶向关键因子参与调控骨骼肌发育的各个环节,包括骨骼肌干细胞增殖、迁移、分化,成肌细胞增殖、分化、肌管融合,肌纤维肥大和纤维类型转换等过程。本文重点归纳了lncRNA在人和小鼠骨骼肌发育中的分子调控机制,介绍了lncRNA的研究方法,综述了lncRNA在家养动物骨骼肌发育中的研究进展,分析了目前家养动物lncRNA研究所面临的困难和挑战,最后展望了未来家养动物lncRNA研究的方向,以期为进一步阐明骨骼肌生长发育的分子调控机制提供参考。  相似文献   

10.
Skeletal muscle fitness plays vital roles in human health and disease and is determined by developmental as well as physiological inputs. These inputs control and coordinate muscle fiber programs, including capacity for fuel burning, mitochondrial ATP production, and contraction. Recent studies have demonstrated crucial roles for nuclear receptors and their co-activators, and micro RNAs(mi RNAs) in the regulation of skeletal muscle energy metabolism and fiber type determination. In this review, we present recent progress in the study of nuclear receptor signaling and mi RNA networks in muscle fiber type switching. We also discuss the therapeutic potential of nuclear receptors and mi RNAs in disease states that are associated with loss of muscle fitness.  相似文献   

11.
Muscling through the microRNA world   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
tRNA主要功能是转运氨基酸参与蛋白质合成,在蛋白质生物合成过程中起着关键性的作用.近年来发现,tRNA是细胞内小RNA分子的重要来源,具有其它重要的生物学功能.来源于成熟tRNA分子的tRNA片段根据切割位置及生成机制的不同,主要分为两类:一类是tRNA半分子(tRNA halves);另一类是较小的tRNA片段,称为tRFs( tRNA fragments).在哺乳动物细胞中,tRNA半分子由血管生成素在tRNA分子反密码环处切割生成.本文主要针对tRNA半分子的加工机制、功能及在临床上的潜在应用进行综述.  相似文献   

14.
15.
To determine the presence and identity of isopentenyladenosine-containing transfer RNAs (tRNAs) in a mammalian cell line, we adopted a novel method to isolate, clone and sequence these RNAs. This method was based on 3' polyadenylation of the tRNA prior to cDNA synthesis, PCR amplification, cloning and DNA sequencing. Using this unique procedure, we report the cloning and sequencing of the selenocysteine-tRNA and mitochondrial tryptophan-tRNA from Chinese hamster ovary cells which contain this specific tRNA modification. This new method will be useful in the identification of other tRNAs and other small RNAs where the primary sequence is unknown.  相似文献   

16.
17.
18.
MicroRNA-206: the skeletal muscle-specific myomiR   总被引:2,自引:0,他引:2  
  相似文献   

19.
庄兆辉  仲永  陈月婵  张志威 《遗传》2018,40(9):733-748
Krüppel样因子(Krüppel-like factors, KLFs)是一类C-末端含有3个C2H2锌指结构的转录因子,N-末端为转录调控结构域,能够结合多种特异蛋白质,介导转录调控。目前在人体基因组中共发现18种KLFs,它们在多种类型人类细胞的分化、表型维持和生理功能调控中发挥重要作用。多个KLFs参与了对人和动物的心肌、平滑肌和骨骼肌的发育和功能的调控。在心肌中,KLF4、KLF10、KLF11和KLF15参与心肌肥大的负调控,KLF6参与调控心脏纤维化,KLF13调控胚胎时期的心肌发育。在血管平滑肌中,KLF4受促增殖或促分化因子调控,介导调控血管平滑肌表型转换;KLF5促进血管平滑肌增殖,KLF8和KLF15抑制血管平滑肌增殖。在骨骼肌中,KLF2、KLF3、KLF4、KLF10和KLF15调控骨骼肌发育,此外,KLF15是肌肉组织能量代谢的调节因子。本文综述了KLFs在心肌、平滑肌和骨骼肌中的功能研究进展,为进一步揭示KLFs在肌肉组织中的作用和肌肉相关疾病的分子机制提供参考。  相似文献   

20.
Protein synthesis (translation) stops at stop codons, codons not complemented by tRNA anticodons. tRNAs matching stops, antitermination (Ter) tRNAs, prevent translational termination, producing dysfunctional proteins. Genomes avoid tRNAs with anticodons whose complement (the anticodon of the ‘antisense’ tRNA) matches stops. This suggests that antisense tRNAs, which also form cloverleaves, are occasionally expressed. Mitochondrial antisense tRNA expression is plausible, because both DNA strands are transcribed as single RNAs, and tRNA structures signal RNA maturation. Results describe potential antisense Ter tRNAs in mammalian mitochondrial genomes detected by tRNAscan-SE, and evidence for adaptations preventing translational antitermination: genomes possessing Ter tRNAs use less corresponding stop codons; antisense Ter tRNAs form weaker cloverleaves than homologuous non-Ter antisense tRNAs; and genomic stop codon usages decrease with stabilities of codon-anticodon interactions and of Ter tRNA cloverleaves. This suggests that antisense tRNAs frequently function in translation. Results suggest that opposite strand coding is exceptional in modern genes, yet might be frequent for mitochondrial tRNAs. This adds antisense tRNA templating to other mitochondrial tRNA functions: sense tRNA templating, formation and regulation of secondary (light strand DNA) replication origins. Antitermination probably affects mitochondrial degenerative diseases and ageing: pathogenic mutations are twice as frequent in tRNAs with antisense Ter anticodons than in other tRNAs, and species lacking mitochondrial antisense Ter tRNAs have longer mean maximal lifespans than those possessing antisense Ter tRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号