首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chanhee Kang 《Autophagy》2016,12(5):898-899
Autophagy and cellular senescence are stress responses essential for homeostasis. While recent studies indicate a genetic relationship between autophagy and senescence, whether autophagy acts positively or negatively on senescence is still subject to debate. Although autophagy was originally recognized as a nonspecific lysosomal degradation pathway (general autophagy), increasing evidence supports a selective form of autophagy that mediates the degradation of specific targets (selective autophagy). Our recent study revealed distinctive roles of selective autophagy and general autophagy in the regulation of senescence, at least in part resolving apparently contradictory reports regarding the relationship between these 2 important homeostatic stress responses.  相似文献   

2.
Human mesenchymal stem cells (hMSCs) are adult multipotent stem cells located in various tissues, including the bone marrow. In contrast to terminally differentiated somatic cells, adult stem cells must persist and function throughout life to ensure tissue homeostasis and repair. For this reason, they must be equipped with DNA damage responses able to maintain genomic integrity while ensuring their lifelong persistence. Evaluation of hMSC response to genotoxic insults is of great interest considering both their therapeutic potential and their physiological functions. This study aimed to investigate the response of human bone marrow MSCs to the genotoxic agent Actinomycin D (ActD), a well‐known anti‐tumour drug. We report that hMSCs react by undergoing premature senescence driven by a persistent DNA damage response activation, as hallmarked by inhibition of DNA synthesis, p21 and p16 protein expression, marked Senescent Associated β‐galactosidase activity and enlarged γH2AX foci co‐localizing with 53BP1 protein. Senescent hMSCs overexpress several senescence‐associated secretory phenotype (SASP) genes and promote motility of lung tumour and osteosarcoma cell lines in vitro. Our findings disclose a multifaceted consequence of ActD treatment on hMSCs that on the one hand helps to preserve this stem cell pool and prevents damaged cells from undergoing neoplastic transformation, and on the other hand alters their functional effects on the surrounding tissue microenvironment in a way that might worsen their tumour‐promoting behaviour.  相似文献   

3.
《Developmental cell》2023,58(12):1007-1021
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   

4.
A robust and heterogenous secretory phenotype is a core feature of most senescent cells. In addition to mediators of age-related pathology, components of the senescence associated secretory phenotype (SASP) have been studied as biomarkers of senescent cell burden and, in turn, biological age. Therefore, we hypothesized that circulating concentrations of candidate senescence biomarkers, including chemokines, cytokines, matrix remodeling proteins, and growth factors, could predict mortality in older adults. We assessed associations between plasma levels of 28 SASP proteins and risk of mortality over a median follow-up of 6.3 years in 1923 patients 65 years of age or older with zero or one chronic condition at baseline. Overall, the five senescence biomarkers most strongly associated with an increased risk of death were GDF15, RAGE, VEGFA, PARC, and MMP2, after adjusting for age, sex, race, and the presence of one chronic condition. The combination of biomarkers and clinical and demographic covariates exhibited a significantly higher c-statistic for risk of death (0.79, 95% confidence interval (CI): 0.76–0.82) than the covariates alone (0.70, CI: 0.67–0.74) (p < 0.001). Collectively, these findings lend further support to biomarkers of cellular senescence as informative predictors of clinically important health outcomes in older adults, including death.  相似文献   

5.
Age-related health decline has been attributed to the accumulation of senescent cells recognized in vivo by p16(Ink4a) expression. The pharmacological elimination of p16(Ink4a)-positive cells from the tissues of mice was shown to extend a healthy lifespan. Here, we describe a population of mesenchymal cells isolated from mice that are highly p16(INK4a)-positive are proficient in proliferation but lack other properties of cellular senescence. These data, along with earlier reports on p16(Ink4a)-positive macrophages, indicate that p16(Ink4a)-positive and senescent cell populations only partially intersect, therefore, extending the list of potential cellular targets for anti- aging therapies.  相似文献   

6.
Yuan H  Zhang P  Qin L  Chen L  Shi S  Lu Y  Yan F  Bai C  Nan X  Liu D  Li Y  Yue W  Pei X 《Gene》2008,410(1):67-74
Human or mouse Spindlin1 is expressed in various tissues and cells, but its biological functions are poorly understood. In this study, we show that human SPINDLIN1 is localized to interphase nucleus and mitotic chromosomes, and its expression in HeLa cells is not regulated in a cell cycle-dependent manner. When SPINDLIN1 is stably overexpressed in HeLa cells, it results in multinucleation of cells, and these multinucleated cells exhibits characteristic features of senescence and apoptosis shown by growth and morphological alterations, beta-galactosidase activity, and Annexin V/7-Aminoactinomycin D staining. Mouse Spindlin1 is highly homologous with human Spindlin1, when overexpressed in NIH3T3 cells, it also induces multinucleation, senescence and apoptosis in murine cells. Our results demonstrate that SPINDLIN1 is an important gene for mammalian mitotic chromosome functions, and disrupted regulation results in abnormal cell division, a mechanism that may be involved in tumorigenesis.  相似文献   

7.
Abstract

Hericium erinaceum is an edible and medicinal mushroom widely used in Korea, Japan, and China. On the search for biologically active compounds supporting the medicinal usage, the MeOH extract of the fruiting bodies of H. erinaceum was investigated for its chemical constituents. Six compounds were isolated and identified as hericenone D (1), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (2), erinacerin B (3), hericenone E (4), hericenone F (5) and isohericerin (6) by comparing their spectroscopic data with previously reported values. The inhibitory effects on adriamycin-induced cellular senescence in human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs) of the isolates (16) were studied. Among the isolated compounds, ergosterol peroxide (2) reduced senescence associated β-galactosidase (SA-β-gal) activity increased in HUVECs treated with adriamycin. According to experimental data obtained, the active compound may inspire the development of a new pharmacologically useful substance to be used in the treatment and prevention of age-related diseases.  相似文献   

8.
9.
Ryu SW  Woo JH  Kim YH  Lee YS  Park JW  Bae YS 《FEBS letters》2006,580(3):988-994
  相似文献   

10.
Microspectrofluorometry of L and WI-38 cells reveals chemical/structural changes due to quiescence or senescence, i.e., lipid peroxidation, spontaneous or photosensitized by hematoporphyrin. Cells treated with hematoporphyrin and a lysosomal umbelliferone probe show a fast-rising umbelliferone emission, plus a fluorescent photoproduct. Studies in rapidly growing versus quiescent L, early passage/late passage WI-38 cells, suggest accumulation of fluorescence Schiff bases (i.e., their association with granular regions of cells in stationary phase, spectral properties, fast increase in photosensitized cells) and a possible lysosomal membrane permeabilization in quiescent or senescent cells.  相似文献   

11.
Cheng Y  Zhao Q  Liu X  Araki S  Zhang S  Miao J 《FEBS letters》2006,580(20):4911-4915
Previously, we found that phosphatidylcholine-specific phospholipase C (PC-PLC) participated in apoptosis signaling of vascular endothelial cells (VECs). Here, to explore whether PC-PLC is involved in the association of apoptosis and senescence in VECs, we analyzed p53 expression and intracellular reactive oxygen species (ROS) levels in young and senescent VECs before and after inhibiting PC-PLC activity. The results showed that suppressing PC-PLC inhibited apoptosis and the elevation of p53 expression induced by apoptosis in young cells, but not in senescent cells, and that inhibiting PC-PLC depressed intracellular ROS levels both in young and senescent cells. The data suggested that PC-PLC was involved in the association of apoptosis and senescence. Its function might be closely related to the level of p53 in VECs.  相似文献   

12.
Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence.  相似文献   

13.
Mesenchymal stem cells (MSCs) undergo cellular senescence during in vitro expansion culture, which accompanies the loss of migration and homing abilities. In this study, we analyzed expression levels of several surface markers of human MSCs at different passages of expansion culture. It has been shown that expression of vascular cell adhesion molecule-1 (VCAM-1) was most markedly decreased among the tested markers in the senescent MSCs. Interestingly the reduced VCAM-1 expression could be restored by applying hyaluronan, a major glycosaminoglycan ligand of CD44, to the culture. It was found that the hyaluronan level in extracellular and pericellular matrices was greatly reduced in the senescent MSCs, mainly due to the decreased expression of hyaluronan synthases, suggesting a correlation between the reduced VCAM-1 expression and hyaluronan synthesis. In fact, when hyaluronan synthases were knock-downed by siRNA transfection, the VCAM-1 expression was also reduced. Our results indicate that VCAM-1 expression in the senescent MSCs was down-regulated because of the reduced synthesis of hyaluronan. Thus, we suggest that hyaluronan supplementation in expansion culture of MSCs would compensate adverse effects induced by its decreased synthesis and subsequently enhance cell adhesion and migration abilities.  相似文献   

14.
15.
Premature senescence of IMR-90 human diploid fibroblasts expressing telomerase (hTERT) establishes after exposure to an acute sublethal concentration of H2O2. We showed herein that p38(MAPK) was phosphorylated after exposure of IMR-90 hTERT cells to H2O2. Selective inhibition of p38(MAPK) activity attenuated the increase in the proportion of cells positive for senescence associated beta-galactosidase activity. We generated a low density DNA array to study gene expression profiles of 240 senescence-related genes. Using this array, p38(MAPK) inhibitor and p38(MAPK) small interferent RNA, we identified several p38(MAPK)-target genes differentially expressed in H2O2-stressed IMR-90 hTERT fibroblasts.  相似文献   

16.
Cellular senescence is reportedly involved in cholangiopathy in primary biliary cirrhosis and oxidative stress is proposed as a pathogenetic factor in biliary epithelial cells (BECs). This study investigated the involvement of proinflammatory cytokines (IFN-β, IFN-γ and TNF-α) and ataxia telangiectasia-mutated (ATM)/p53/ p21WAF1/Cip1 pathway with respect to oxidative stress in cellular senescence of BECs. H2O2 treatment (oxidative stress) induced phosphorylation (activation) of ATM and p53 and also p21WAF1/Cip1 expression in BECs. Treatment with inflammatory cytokines generated reactive oxygen species (ROS) in cultured BECs followed by activation of the ATM/p53/p21WAF1/Cip1 pathway and the induction of cellular senescence. Pre-treatment with ATM inhibitor (2-aminopurine) and antioxidant (N-acetylcysteine) significantly blocked the cellular senescence of BECs induced by oxidative stress or inflammatory cytokines. In conclusion, proinflamamtory cytokines induce ROS generation and activate the ATM/p53/p21WAF1/Cip1 pathway, followed by biliary epithelial senescence. This senescent process may be involved in the development of destructive cholangiopathy in humans.  相似文献   

17.
The blind mole rat (Spalax) is a wild, long‐lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence‐associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response. Spalax fibroblasts undergo replicative senescence (RS) and etoposide‐induced senescence (EIS), evidenced by an increased activity of senescence‐associated beta‐galactosidase (SA‐β‐Gal), growth arrest, and overexpression of p21, p16, and p53 mRNAs. Yet, unlike mouse and human fibroblasts, RS and EIS Spalax cells showed undetectable or decreased expression of the well‐known SASP factors: interleukin‐6 (IL6), IL8, IL1α, growth‐related oncogene alpha (GROα), SerpinB2, and intercellular adhesion molecule (ICAM‐1). Apparently, due to the efficient DNA repair in Spalax, senescent cells did not accumulate the DNA damage necessary for SASP activation. Conversely, Spalax can maintain DNA integrity during replicative or moderate genotoxic stress and limit pro‐inflammatory secretion. However, exposure to the conditioned medium of breast cancer cells MDA‐MB‐231 resulted in an increase in DNA damage, activation of the nuclear factor κB (NF‐κB) through nuclear translocation, and expression of inflammatory mediators in RS Spalax cells. Evaluation of SASP in aging Spalax brain and intestine confirmed downregulation of inflammatory‐related genes. These findings suggest a natural mechanism for alleviating the inflammatory response during cellular senescence and aging in Spalax, which can prevent age‐related chronic inflammation supporting healthy aging and longevity.  相似文献   

18.
19.
We have shown that protein kinase CKII (CKII) inhibition induces senescence through the p53-dependent pathway in HCT116 cells. Here we examined the molecular mechanism through which CKII inhibition activates p53 in HCT116 cells. CKII inhibition by treatment with CKII inhibitor or CKIIα small-interfering RNA (siRNA) increased intracellular hydrogen peroxide and superoxide anion levels. These effects were significantly blocked by pretreatment of cells with the antioxidant N-acetylcysteine. Additionally, NADPH oxidase (NOX) inhibitor apocynin and p22phox siRNA significantly reduced p53 expression and suppressed the appearance of senescence markers. CKII inhibition did not affect mitochondrial superoxide generation. These data demonstrate that CKII inhibition induces superoxide anion generation via NOX activation, and subsequent superoxide-dependent activation of p53 acts as a mediator of senescence in HCT116 cells after down-regulation of CKII.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号