首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hypoxia promotes tumor evolution and metastasis, and hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxia-related cellular processes in cancer. The eIF4E translation initiation factors, eIF4E1, eIF4E2, and eIF4E3, are essential for translation initiation. However, whether and how HIF-1α affects cap-dependent translation through eIF4Es in hypoxic cancer cells has been unknown. Here, we report that HIF-1α promoted cap-dependent translation of selective mRNAs through up-regulation of eIF4E1 in hypoxic breast cancer cells. Hypoxia-promoted breast cancer tumorsphere growth was HIF-1α-dependent. We found that eIF4E1, not eIF4E2 or eIF4E3, is the dominant eIF4E family member in breast cancer cells under both normoxia and hypoxia conditions. eIF4E3 expression was largely sequestered in breast cancer cells at normoxia and hypoxia. Hypoxia up-regulated the expression of eIF4E1 and eIF4E2, but only eIF4E1 expression was HIF-1α-dependent. In hypoxic cancer cells, HIF-1α-up-regulated eIF4E1 enhanced cap-dependent translation of a subset of mRNAs encoding proteins important for breast cancer cell mammosphere growth. In searching for correlations, we discovered that human eIF4E1 promoter harbors multiple potential hypoxia response elements. Furthermore, using chromatin immunoprecipitation (ChIP) and luciferase and point mutation assays, we found that HIF-1α utilized hypoxia response elements in the human eIF4E1 proximal promoter region to activate eIF4E1 expression. Our study suggests that HIF-1α promotes cap-dependent translation of selective mRNAs through up-regulating eIF4E1, which contributes to tumorsphere growth of breast cancer cells at hypoxia. The data shown provide new insights into protein synthesis mechanisms in cancer cells at low oxygen levels.  相似文献   

3.
Aplastic anemia is characterized by a reduced hematopoietic stem cell number. Although GATA-2 expression was reported to be decreased in CD34-positive cells in aplastic anemia, many questions remain regarding the intrinsic characteristics of hematopoietic stem cells in this disease. In this study, we identified HOXB4 as a downstream target of GATA-2 based on expression profiling with human cord blood-derived CD34-positive cells infected with control or GATA-2 lentiviral shRNA. To confirm the functional link between GATA-2 and HOXB4, we conducted GATA-2 gain-of-function and loss-of-function experiments, and HOXB4 promoter analysis, including luciferase assay, in vitro DNA binding analysis and quantitative ChIP analysis, using K562 and CD34-positive cells. The analyses suggested that GATA-2 directly regulates HOXB4 expression through the GATA sequence in the promoter region. Furthermore, we assessed GATA-2 and HOXB4 expression in CD34-positive cells from patients with aplastic anemia (n = 10) and idiopathic thrombocytopenic purpura (n = 13), and demonstrated that the expression levels of HOXB4 and GATA-2 were correlated in these populations (r = 0.6573, p<0.01). Our results suggested that GATA-2 directly regulates HOXB4 expression in hematopoietic stem cells, which may play an important role in the development and/or progression of aplastic anemia.  相似文献   

4.
Fhl1 (Four and a Half LIM domain 1) regulates muscle growth and development. In addition, skeletal myoblast growth is significantly affected by gender differences, implicating estrogen in the regulation of muscle development. We sought to determine if estrogen influences Fhl1 gene expression levels in rat L6GNR4 myoblastocytes that express the estrogen receptor β (ERβ), while luciferase assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP) assay were employed to confirm the interaction between ERβ and Fhl1. Treatment of L6GNR4 cells with physiological levels of 17β-estradiol (E2) results in markedly decreased endogenous Fhl1 expression. Tamoxifen, an ER antagonist, partially reverses E2-mediated Fhl1 down-regulation in L6GNR4 cells. Furthermore, luciferase assay and EMSA identified a novel promoter region of Fhl1 that directly interacts with ERβ. ChIP of the ERβ-Fhl1 promoter complex from L6GNR4 cells confirmed that endogenous ERβ interacts with this region. These data indicate that E2 down-regulates Fhl1 expression through its binding to the ERβ. This is the first report of a small molecule that can affect Fhl1 expression. E2 may therefore be useful in developing new strategies for regulating Fhl1 expression and understanding the influence of estrogen on muscle growth and development.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Estradiol (E2), estrogen receptor (ER), ER-coregulators have been implicated in the development and progression of breast cancer. In situ E2 synthesis is implicated in tumor cell proliferation through autocrine or paracrine mechanisms, especially in post-menopausal women. Several recent studies demonstrated activity of aromatase P450 (Cyp19), a key enzyme that plays critical role in E2 synthesis in breast tumors. The mechanism by which tumors enhance aromatase expression is not completely understood. Recent studies from our laboratory suggested that PELP1 (Proline, Glutamic acid, Leucine rich Protein 1), a novel ER-coregulator, functions as a potential proto-oncogene and promotes tumor growth in nude mice models without exogenous E2 supplementation. In this study, we found that PELP1 deregulation contributes to increased expression of aromatase, local E2 synthesis and PELP1 cooperates with growth factor signaling components in the activation of aromatase. PELP1 deregulation uniquely up-regulated aromatase expression via activation of aromatase promoter I.3/II. Analysis of PELP1 driven mammary tumors in xenograft as well as in transgenic mouse models revealed increased aromatase expression. PELP1-mediated induction of aromatase requires functional Src and PI3K pathways. Chromatin immuno precipitation (ChIP) assays revealed that PELP1 is recruited to the Aro 1.3/II aromatase promoter. HER2 signaling enhances PELP1 recruitment to the aromatase promoter and PELP1 plays a critical role in HER2-mediated induction of aromatase expression. Mechanistic studies revealed that PELP1 interactions with orphan receptor ERRα, and histone demethylases play a role in the activation of aromatase promoter. Accordingly, ChIP analysis showed alterations in histone modifications at the aromatase promoter in the model cells that exhibit local E2 synthesis. Immunohistochemical analysis of breast tumor progression tissue arrays suggested that deregulation of aromatase expression occurs in advanced-stage and node-positive tumors, and that cooverexpression of PELP1 and aromatase occur in a sub set of tumors. Collectively, our results suggest that PELP1 regulation of aromatase represent a novel mechanism for in situ estrogen synthesis leading to tumor proliferation by autocrine loop and open a new avenue for ablating local aromatase activity in breast tumors.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号