首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mitochondrial protein Bcs1p is conserved from Saccharomyces cerevisiae to humans and its C-terminal region exhibits an AAA (ATPases associated with diverse cellular activities) domain. The absence of the yeast Bcs1p leads to an assembly defect of the iron-sulfur protein (ISP) subunit within the mitochondrial respiratory complex III, whereas human point mutations located all along the protein cause various pathologies. We have performed a structure-function analysis of the yeast Bcs1p by randomly generating a collection of respiratory-deficient point mutants. We showed that most mutations are in the C-terminal region of Bcs1p and have localized them on a theoretical three-dimensional model based on the structure of several AAA proteins. The mutations can be grouped into classes according to their respiratory competence and their location on the three-dimensional model. We have further characterized five mutants, each substituting an amino acid conserved in yeast and mammalian Bcs1 proteins but not in other AAA proteins. The effects on respiratory complex assembly and Bcs1p accumulation were analyzed. Intragenic and extragenic compensatory mutations able to restore complex III assembly to the mutants affecting the AAA domain were isolated. Our results bring new insights into the role of specific residues in critical regions that are also conserved in the human Bcs1p. We show that (1) residues located at the junction between the Bcs1p-specific and the AAA domains are important for the activity and stability of the protein and (2) the residue F342 is important for interactions with other partners or substrate proteins.  相似文献   

2.
The yeast cytochrome bc1 complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc1 complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc1 assembly and the formation of a functionally inactive bc1 core structure of about 500-kDa. This immature bc1 core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc1 core structure leading to the formation of the functional homodimeric bc1 complex. Following Bcs1p expression, the mature bc1 complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc1 complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc1 complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc1 core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc1 complex and gives new insights into the molecular mechanisms involved in the last steps of bc1 assembly.  相似文献   

3.
Lysine residues of horse heart cytochrome c have been modified with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) and ethyl N-5-azido-2-nitrobenzoylaminoacetimidate (ANB-AI), reagents that attach nitroaryl azides onto the surface of proteins by amide and amidine linkages, respectively. When acting as an electron acceptor for yeast cytochrome b2, modification of cytochrome c with ANB-NOS increases the Km for the reaction by 2-fold, while modification with ANB-AI has little effect on the Km. The Vmax for the reduction of cytochrome c by cytochrome b2 is reduced by the attachment of both compounds to cytochrome c. When the modified cytochromes c were illuminated with phosvitin, cytochrome b5, and cytochrome c peroxidase, cross-linked species were formed which could be resolved by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. In each case the amidine derivatives of cytochrome c modified with ANB-AI showed more cross-linking than the amide derivatives of cytochrome c modified with ANB-NOS. When the modified cytochromes c were present in a 3-fold excess of phosvitin, cross-linked products containing 1, 2, and 3 molecules of cytochrome c covalently attached to phosvitin were observed. Photolysis of the modified cytochromes c in the presence of cytochrome b5, resulted in the formation of a cross-linked 1:1 complex between the two cytochromes as well as higher order aggregates containing up to 5 molecules of cytochrome c plus cytochrome b2. When cytochrome c peroxidase was illuminated with the modified cytochromes c, the predominant cross-linked product was a 1:1 complex between the two heme proteins. However, a cross-linked species was detected in small amounts with the apparent composition of 2 molecules of cytochrome c and 1 of the peroxidase. Also, a procedure is described for the synthesis of ANB-AI with 14C in the imidocarbon which is ultimately derived from 14CN.  相似文献   

4.
The inhibitors of protein synthesis, chloramphenicol and cycloheximide, were added to cultures of yeast undergoing glucose derepression at different times during the growth cycle. Both inhibitors blocked the increase in activity of coenzyme QH2-cytochrome c reductase, suggesting that the formation of complex III of the respiratory chain requires products of both mitochondrial and cytoplasmic protein synthesis.The possibility that precursor proteins synthesized by either cytoplasmic or mitochondrial ribosomes may accumulate was investigated by the sequential addition of cycloheximide and chloramphenicol (or the reverse order) to cultures of yeast undergoing glucose derepression. When yeast cells were grown for 3 hr in medium containing cycloheximide and then transferred to medium containing chloramphenicol, the activity of cytochrome oxidase increased at the same rate as the control during the first hour in chloramphenicol. These results suggest that some accumulation of precursor proteins synthesized in the mitochondria had occurred when cytoplasmic protein synthesis was blocked during the growth phase in cycloheximide. In contrast, essentially no products of mitochondrial protein synthesis accumulated as precursors for either oligomycin-sensitive ATPase or complex III of the respiratory chain during growth of the cells in cycloheximide.When yeast were grown for 3 hr in medium containing chloramphenicol followed by 1 hr in cycloheximide, the activities of cytochrome oxidase and succinate-cytochrome c reductase increased at the same rate as the control, while the activities of oligomycin-sensitive ATPase and NADH or coenzyme QH2-cytochrome c reductase were nearly double that of the control. These data suggest that a significant accumulation of mitochondrial proteins synthesized in the cytoplasm had occurred when the yeast cells were grown in medium containing sufficient chloramphenicol to block mitochondrial protein synthesis. The possibility that proteins synthesized in the cytoplasm may act to control the synthesis of mitochondrial proteins for both oligomycin-sensitive ATPase and complex III of the respiratory chain is discussed.  相似文献   

5.
The effects of 33 quinone derivatives on mitochondrial electron transfer in yeast were examined. Twenty-two of the compounds were also tested for their effects on the growth of yeast cells. Four strong inhibitors of electron transfer were identified: 5-n-undecyl-6-hydroxy-4, 7-dioxobenzothiazole, 7-ω-cyclohexyloctyl-6-hydroxy-5,8-quinolinequinone, 7-n-hexadecyl-mercapto-6-hydroxy-5, 8-quinolinequinone, and 3-n-dodecylmercapto-2-hydroxy-1, 4-naphthoquinone. They inhibit the growth of yeast with ethanol as an energy source, but not when glucose is the energy source. The NADH oxidase activity of isolated mitochondria is 50% inhibited by these quinone derivatives at about 10?8m, or 0.5 μmol/g mitochondrial protein; 1000-fold higher concentrations do not affect electron transfer from NADH or succinate to coenzyme Q2. The effects of the inhibitors on cytochrome spectra indicate that they block electron transfer between cytochromes b and c1. A possible antagonism between these compounds and coenzyme Q at a site between cytochromes b and C1 is discussed in terms of Mitchell's “protonmotive Q cycle” hypothesis (Mitchell, P. (1976) J. Theor. Biol. 62, 327–367). 6-β-naphthylmercapto-5-chloro-2,3-dimethoxy-1,4-benzoquinone inhibits electron transfer between succinate and coenzyme Q2 or phenazine methosulfate, suggesting a site in the succinate-coenzyme Q reductase complex with a different quinone specificity from that of the site in the cytochrome bc1 complex. Seven of the quinone derivatives inhibit growth on both glucose and ethanol media, indicating that their effect is not the result of inhibition of respiration.  相似文献   

6.
Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report mutations (c.288G>T [p.Trp96Cys] and c.643C>T [p.Leu215Phe]) in CYC1, encoding the cytochrome c1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c. Cytochrome c1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals’ fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity.  相似文献   

7.
A comparative study of the interaction of various cytochromes c with phospholipid vesicles and with mitochondrial membranes was undertaken. Both mammalian and yeast types of cytochrome c bind preferentially in the oxidized form as evidenced by the midpoint redox potential (Em 7.0) becoming more negative upon binding. Cytochrome c which is reincorporated into cytochrome c-depleted mitochondria is kinetically comparable with the native cytochrome c component; rate of cytochrome b oxidation is maximally restored at ratios of c1:c:a of 1:1:1. Comparison between the electron paramagnetic spectrum of cytochrome c labeled at methionine 65 or cysteine 103 reveals that upon binding to the mitochondrial membrane, the former is immobilized and not the latter. This result suggests that cytochrome c binds to the membrane at the side at which methionine 65 is located.  相似文献   

8.
The proton nuclear magnetic resonance spectra of various metal substituted derivatives of horse cytochrome c have been studied and compared to the spectra of native cytochrome c. The proteins studied were the cobalt(III), copper(II), iron(II), iron(III), manganese(III), nickel(II), and zinc(II) derivatives. Spectra of the diamagnetic cobalt(III), iron(II), and zinc(II) proteins were well-resolved and specific resonance assignments were made. All three proteins possessed a methionine ligand to the metal. The spectrum of cobalt(III) cytochrome c was investigated in some detail as this protein was used as a diagmagnetic control for iron(III) cytochrome c. Comparison of the spectra of cobalt(III) and iron(II) cytochromes c revealed that their conformations were very similar but the following conclusion could be made; the oxidation of cytochrome c is accompanied by a small conformation change.  相似文献   

9.
《Biochemical medicine》1978,19(3):366-373
Mitochondria were isolated from small muscle biopsy specimens, and the cytochrome content was calculated from the reduced minus oxidized difference spectrum recorded at room temperature.From the difference spectra obtained after reduction of the cytochromes with dithionite it is concluded that human mitochondrial suspensions are contaminated with hemoglobin or myoglobin.The cytochrome content calculated after reduction of the cytochromes with succinate plus KCN is lower than that obtained after reduction with dithionite, indicating incomplete reduction of the cytochromes by the former method.Storage of muscle tissue at −70°C before isolation of mitochondria results in a loss of cytochrome c + c1 from these mitochondria.  相似文献   

10.
Derepression of mitochondria and their enzymes in yeast: regulatory aspects   总被引:27,自引:0,他引:27  
We have performed a detailed analysis of the properties of glucose-repressed cells of a commercial strain of Saccharomyces cerevisiae. They contain measurable amounts of the respiratory enzymes NADH oxidase, cytochrome c oxidase, succinate dehydrogenase, succinate:cytochrome c reductase and NADH:cytochrome c reductase (antimycin A-sensitive) as well as the dehydrogenases for l-malate, l-glutamate, and l8-isocitrate. Cytochromes b, c1, and aa3 are present in amounts that may be in excess of those required for cytochrome-linked enzyme activities. Enzymes and cytochromes are localized in large, presumably mitochondrial organelles among which no compositional or functional heterogeneity could be detected.We have also analyzed the kinetics of synthesis of respiratory enzymes and cytochromes during the release from catabolite(glucose) repression. All activities assayed except for cytochrome c oxidase begin their derepression before the external glucose concentration falls below 0.4%; derepression of cytochrome oxidase occurs only after the glucose concentration falls below 0.1%. The earlier events comprise the “fermentative” phase of derepression while the later events comprise the “oxidative” phase. The two phases can be distinguished operationally by their sensitivity to antimycin A. Only the oxidative phase is blocked by the inhibitor. Respiratory enzymes and cytochromes appear to fall into two classes distinguishable by their increase during derepression. An apparently constitutive one consists of cytochrome c oxidase, ATPase, and cytochromes aa3, b, and c1; these entities increase in amount per cell but not in amount per unit of mitochondrial mass and are of the order of 5-fold or less. The second class consists of those activities that increase by more than 6-fold and may be considered derepressible in the strict sense. Thus, proliferation and differentiation of mitochondria both contribute to the cellular changes associated with derepression.The fermentative phase of derepression does not require mitochondrial function, mitochondrial protein, or RNA synthesis, or the gradual accumulation of regulatory elements for either its initiation or persistence. This phase of derepression also occurs in cytoplasmic petites. In contrast, the oxidative phase of derepression requires mitochondrial function. Mitochondrial gene expression is required for the biogenesis of fully functional mitochondria but, except for cytochrome c, it plays little or no role in regulating the expression of nuclear genes the products of which are localized in mitochondria.  相似文献   

11.
Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain (ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe2+ treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive) fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level of the QO site of complex III.  相似文献   

12.
Recently, energy production pathways have been shown to be viable antitubercular drug targets to combat multidrug-resistant tuberculosis and eliminate pathogen in the dormant state. One family of drugs currently under development, the imidazo[1,2-a]pyridine derivatives, is believed to target the pathogen''s homolog of the mitochondrial bc1 complex. This complex, denoted cytochrome bcc, is highly divergent from mitochondrial Complex III both in subunit structure and inhibitor sensitivity, making it a good target for drug development. There is no soluble cytochrome c in mycobacteria to transport electrons from the bcc complex to cytochrome oxidase. Instead, the bcc complex exists in a “supercomplex” with a cytochrome aa3-type cytochrome oxidase, presumably allowing direct electron transfer. We describe here purification and initial characterization of the mycobacterial cytochrome bcc-aa3 supercomplex using a strain of M. smegmatis that has been engineered to express the M. tuberculosis cytochrome bcc. The resulting hybrid supercomplex is stable during extraction and purification in the presence of dodecyl maltoside detergent. It is hoped that this purification procedure will potentiate functional studies of the complex as well as crystallographic studies of drug binding and provide structural insight into a third class of the bc complex superfamily.  相似文献   

13.
Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by establishing that UQCC1 and UQCC2 are complex III assembly factors participating in cytochrome b biogenesis.  相似文献   

14.
The final step in the assembly of the ubiquinol-cytochrome c reductase or bc1 complex involves the insertion of the Rieske Fe/S cluster protein, Rip1. Maturation of Rip1 occurs within the mitochondrial matrix prior to its translocation across the inner membrane (IM) in a process mediated by the Bcs1 ATPase and subsequent insertion into the bc1 complex. Here we show that the matrix protein Mzm1 functions as a Rip1 chaperone, stabilizing Rip1 prior to the translocation step. In the absence of Mzm1, Rip1 is prone to either proteolytic degradation or temperature-induced aggregation. A series of Rip1 truncations were engineered to probe motifs necessary for Mzm1 interaction and Bcs1-mediated translocation of Rip1. The Mzm1 interaction with Rip1 persists in Rip1 variants lacking its transmembrane domain or containing only its C-terminal globular Fe/S domain. Replacement of the globular domain of Rip1 with that of the heterologous folded protein Grx3 abrogated Mzm1 interaction; however, appending the C-terminal 30 residues of Rip1 to the Rip1-Grx3 chimera restored Mzm1 interaction. The Rip1-Grx3 chimera and a Rip1 truncation containing only the N-terminal 92 residues each induced stabilization of the bc1:cytochrome oxidase supercomplex in a Bcs1-dependent manner. However, the Rip1 variants were not stably associated with the supercomplex. The induced supercomplex stabilization by the Rip1 N terminus was independent of Mzm1.  相似文献   

15.
The binding of cytochrome c to the cytochrome bc1 complex of bovine heart mitochondria was studied. Cytochrome c derivatives, arylazido-labeled at lysine 13 or lysine 22, were prepared and their properties as electron acceptors from the bc1 complex were measured. Mixtures of bc1 complex with cytochrome c derivatives were illuminated with ultraviolet light and afterwards subjected to polyacrylamide gel electrophoresis. The gels were analysed using dualwavelength scanning at 280 minus 300 and 400 minus 430 nm. It was found that illumination with ultraviolet light in the presence of the lysine 13 derivative produced a diminution of the polypeptide of the bc1 complex having molecular weight 30 000 (band IV) and formation of a new polypeptide composed of band IV and cytochrome c. Band IV was identified as cytochrome c1, and it was concluded that this hemoprotein interacts with cytochrome c and contains its binding site in complex III of the mitochondrial respiratory chain. Illumination of the bc1 complex in presence of the lysine 22 derivative did not produce changes of the polypeptide pattern.  相似文献   

16.
To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for “signaling” and “damaging” ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress.  相似文献   

17.
We have studied the mobility of yeast mitochondrial translation products during electrophoresis on polyacrylamide gels of different composition and found that these polypeptides can be divided into two groups. One, to which subunit II of cytochrome c oxidase belongs, behaves normal as all water-soluble reference proteins. The other, to which cytochrome b and subunits I and III of cytochrome c oxidase belong, shows a free electrophoretic mobility about twice as fast as the first group. Conditions have been found to separate cytochrome c1 from cytochrome b.  相似文献   

18.
The effects of chloramphenicol on S. cerevisiae and on a cytoplasmic respiratory-deficient mutant derived from the same strain are compared. In the normal yeast, high concentrations of chloramphenicol in the growth medium completely inhibit the formation of cytochromes a, a3, b, and c1 and partially inhibit succinate dehydrogenase formation, whereas they do not affect cytochrome c synthesis. This has been correlated with the marked reduction of mitochondrial cristae formation in the presence of the drug. In glucose-repressed normal yeast, chloramphenicol has little effect on the formation of outer mitochondrial membrane, or on the synthesis of malate dehydrogenase and fumarase. However, both these enzymes, as well as the number of mitochondrial profiles, are markedly decreased when glucose de-repressed yeast is grown in the presence of chloramphenicol. The antibiotic did not appear to affect the cytoplasmic respiratory-deficient mutant. The results have been interpreted to indicate that chloramphenicol inhibits the protein-synthesizing system characteristic of the mitochondria. Since the drug does not prevent the formation of cytochrome c, of several readily solubilized mitochondrial enzymes, or of outer mitochondrial membrane, it is suggested that these are synthesized by nonmitochondrial systems.  相似文献   

19.
Several cytochromes c2 from the Rhodospirillaceae show a pH dependence of redox potential in the physiological pH range which can be described by equations involving an ionisation in the oxidised form (pKo) and one in the reduced form (pKr). These cytochromes fall into one of two groups according to the degree of separation of pKo and pKr. In group A, represented here by the Rhodomicrobium vannielii cytochrome c2, the separation is approx. one pH unit and the ionisation is that of a haem propionic acid. Members of this group are unique among both cytochromes c2 and mitochondrial cytochromes c in lacking the conserved residue Arg-38. We propose that the role of Arg-38 is to lower the pK of the nearby propionic acid, so that it lies out of the physiological pH range. Substitution of this residue by an uncharged amino acid leads to a raised pK for the propionic acid. In group B, represented here by Rhodopseudomonas viridis cytochrome c2, the separation between pKo and pKr is approx. 0.4 pH unit and the ionisable group is a histidine at position 39. This was established by NMR spectroscopy and confirmed by chemical modification. Only a few other members of the cytochrome c2/mitochondrial cytochrome c family have a histidine at this position and of these, both Crithidia cytochrome c-557 and yeast cytochrome c were found to have a pH-dependent redox potential similar to that of Rps. viridis cytochrome c2. Using Coulomb's law, it was found that the energy required to separate pKo and pKr could be accounted for by simple electrostatic interactions between the haem iron and the ionisable group.  相似文献   

20.
We have assayed the ubiquinol-cytochrome c reductase activity either in situ or in different mitochondrial fractions, including the isolated bc1 complex, employing ubiquinol-1 and exogenous cytochrome c as substrates. A clear biphasic behavior of both the time courses and the initial rates of cytochrome c reduction have been observed. Two Km values have been found, one of 1–7 × 10?6m ubiquinol-1, and another varying from 0.6 to 4.6 × 10?5m ubiquinol-1, depending on the cytochrome c concentration and the type of mitochondrial fraction used. Either the kinetic phase with the lower Km or the kinetic phase with the higher Km exhibits an almost identical antimycin sensitivity. We have also monitored the rapid reduction of endogenous b cytochromes in the presence of antimycin, and the initial rates are again biphasic as a function of ubiquinol-1 concentration. These findings indicate that the steps conferring the biphasic kinetics to the ubiquinol-cytochrome c reductase activity involve the redox equilibria between exogenous ubiquinol-1 and the b cytochromes, and suggest that two redox pathways may be present in the electron transfer from ubiquinol to cytochrome c through the bc1 segment of the mammalian respiratory chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号