首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Imatinib mesylate (STI571), a specific inhibitor of BCR/ABL tyrosine kinase, exhibits potent antileukemic effects in the treatment of chronic myelogenous leukemia (CML). However, the precise mechanism by which inhibition of BCR/ABL activity results in pharmacological responses remains unknown. BCR/ABL-positive human K562 CML cells resistant to doxorubicin (K562DoxR) and their sensitive counterparts (K562DoxS) were used to determine the mechanism by which the STI571 inhibitor may overcome drug resistance. K562 wild type cells and CCRF-CEM lymphoblastic leukemia cells without BCR/ABL were used as controls. The STI571 specificity was examined by use of murine pro-B lymphoid Baf3 cells with or without BCR/ABL kinase expression. We examined kinetics of DNA repair after cell treatment with doxorubicin in the presence or absence of STI571 by the alkaline comet assay. The MTT assay was used to estimate resistance against doxorubicin and Western blot analysis with Crk-L antibody was performed to evaluate BCR/ABL kinase inhibition by STI571. We provide evidence that treatment of CML-derived BCR/ABL-expressing leukemia K562 cells with STI571 results in the inhibition of DNA repair and abrogation of the resistance of these cells to doxorubicin. We found that doxorubicin-resistant K562DoxR cells exhibited accelerated kinetics of DNA repair compared with doxorubicin-sensitive K562DoxS cells. Inhibition of BCR/ABL kinase in K562DoxR cells with 1 microM STI571 decreased the kinetics of DNA repair and abrogated drug resistance. The results suggest that STI571-mediated inhibition of BCR/ABL kinase activity can affect the effectiveness of the DNA-repair pathways, which in turn may enhance drug sensitivity of leukemia cells.  相似文献   

2.
BCR/ABL oncogene, as a result of chromosome aberration t(9;22), is the pathogenic principle of almost 95% of human chronic myeloid leukemia (CML). Imatinib (STI571) is a highly selective inhibitor of BCR/ABL oncogenic tyrosine kinase used in leukemia treatment. It has been suggested that BCR/ABL may contribute to the resistance of leukemic cells to drug and radiation through stimulation of DNA repair in these cells. To evaluate further the influence of STI571 on DNA repair we studied the efficacy of this process in BCR/ABL-positive and -negative cells using single cell electrophoresis (comet assay). In our experiments, K562 human chronic myeloid leukemia cells expressing BCR/ABL and CCRF-CEM human acute lymphoblastic leukemia cells without BCR/ABL expression were employed. The cells were exposed for 1 h at 37 degrees C to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) at 5 microM, mitomycin C (MMC) at 50 microM or to gamma-radiation at 15 Gy with or without a 24 h preincubation at 1 microM of STI571. The MTT cells survival after 4 days of culture showed that STI571 enhanced the cytotoxity of the examined compounds in the K562 line. Further it was found, that the inhibitor decreased the efficacy of DNA repair challenged by each agent, but only in the K562 expressing BCR/ABL. Due to the variety of DNA damage induced by the employed agents in this study we can speculate, that BCR/ABL may stimulate multiple pathways of DNA repair. These results extend our previous studies performed on BCR/ABL-transformed mouse cells onto human cells. It is shown that BCR/ABL stimulated DNA repair in human leukemia cells. In conclusion we report that STI571 was found to inhibit DNA repair and abrogate BCR/ABL-positive human leukemia cells therapeutic resistance.  相似文献   

3.
The BCR/ABL fusion tyrosine kinase activates various intracellular signaling pathways, thus causing chronic myeloid leukemia (CML). Here we demonstrate that the inducible expression of BCR/ABL in a murine hematopoietic cell line, TonB210, leads to the activation of the Ras family small GTPase Rap1, which is inhibited by the ABL kinase inhibitor imatinib. The Rap1 activity in a CML cell line, K562, was also inhibited by imatinib. Inhibition of Rap1 activation by a dominant negative mutant of Rap1, Rap1-N17, or SPA-1 inhibited the BCR/ABL-induced activation of Elk-1. BCR/ABL also activated in a kinase activity-dependent manner the B-Raf kinase, which is an effector molecule of Rap1 and a potent activator of the MEK/Erk/Elk-1 signaling pathway. Together, these data suggest that, in addition to the well-established Ras/Raf-1 pathway, BCR/ABL activates the alternative signaling pathway involving Rap1 and B-Raf to activate Erk, which may play important roles in leukemogenesis.  相似文献   

4.
The Philadelphia translocation t(9;22) resulting in the bcr/abl fusion gene is the pathogenic principle of almost 95% of human chronic myelogenous leukemia (CML). Imatinib mesylate (STI571) is a specific inhibitor of the BCR/ABL fusion tyrosine kinase that exhibits potent antileukemic effects in CML. BCR/ABL-positive K562 and -negative CCRF-CEM human leukemia cells were investigated. MTT survival assay and clonogenic test of the cell proliferation ability were used to estimate resistance against idarubicin. DNA damage after cell treatment with the drug at the concentrations from 0.001 to 3 microM with or without STI571 pre-treatment were examined by the alkaline comet assay. We found that the level of DNA damages was lower in K562 cells after STI571 pre-treatment. It is suggested that BCR/ABL activity may promote genomic instability, moreover K562 cells were found to be resistant to the drug treatment. Further, we provided evidence of apoptosis inhibition in BCR/ABL-positive cells using caspase-3 activity colorimetric assay and DAPI nuclear staining for chromatin condensation. We suggest that these processes associated with cell cycle arrest in G2/M checkpoint detected in K562 BCR/ABL-positive compared to CCRF-CEM cells without BCR/ABL expression might promote clone selection resistance to drug treatment.  相似文献   

5.
The BCR - ABL tyrosine kinase has been implicated as the cause of Philadelphia chromosome (Ph1)-positive leukemias. We report herein that CGP 57148, a selective inhibitor of the ABL tyrosine kinase, caused apoptosis specifically in bcr - abl-positive chronic myelogenous leukemia (CML) cells, K562 and KYO-1. Upon treatment with CGP 57148, CRKL, a specific substrate for BCR - ABL that propagates signals via phosphatidylinositol-3' kinase (PI3K), was dephosphorylated, indicating inhibition of BCR - ABL tyrosine kinase at the cellular level. Likewise, MAPK/ERK, a downstream mediator of Ras, was also dephosphorylated. Caspase activation and cleavage of retinoblastoma protein (pRB) accompanied the development of CGP 57148-induced apoptosis. Inhibition of caspase suppressed apoptosis and the cleavage of pRB, and in turn arrested cells in the G1 phase. These results indicate that CGP 57148 shows apoptogenic and anti-proliferative effects on bcr - abl-positive cells by blocking BCR - ABL-initiated signaling pathways.  相似文献   

6.
7.
Interactions between the proteasome inhibitor, bortezomib, and the sphingosine kinase (SPK1) inhibitor, SKI, were examined in BCR/ABL human leukemia cells. Coexposure of K562 or chronic myeloid leukemia (CML) cells from patients to subtoxic concentrations of SKI (10 μM) and bortezomib (100 nM) resulted in a synergistic increase in caspase-3 cleavage and apoptosis. These events were associated with the downregulation of BCR–ABL and Mcl-1, and a marked reduction in SPK1 expression. In imatinib mesylate-resistant K562 cells that displayed decreased BCR–ABL expression, bortezomib/SKI treatment markedly increased apoptosis and inhibited colony-formation in association with the downregulation of Mcl-1. Finally, the bortezomib/SKI regimen also potently induced the downregulation of BCR/ABL and Mcl-1 in human leukemia cells. Collectively, these findings suggest that combining SKI and bortezomib may represent a novel strategy in leukemia, including apoptosis-resistant BCR–ABL+ hematologic malignancies.  相似文献   

8.
Resistance toward imatinib (IM) and other BCR/ABL tyrosine kinase inhibitors remains troublesome in the treatment of advanced stage chronic myeloid leukemia (CML). The aim of this study was to estimate the reversal effects of down-regulation of Na+/H+ exchanger 1 (NHE1) on the chemoresistance of BCR-ABL-positive leukemia patients'' cells and cell lines. After treatment with the specific NHE1 inhibitor cariporide to decrease intracellular pH (pHi), the heme oxygenase-1 (HO-1) levels of the K562R cell line and cells from IM-insensitive CML patients decreased. HO-1, as a Bcr/Abl-dependent survival molecule in CML cells, is important for the resistance to tyrosine kinase inhibitors in patients with newly diagnosed CML or IM-resistant CML. Silencing PKC-β and Nrf-2 or treatment with inhibitors of p38 pathways obviously blocked NHE1-induced HO-1 expression. Furthermore, treatment with HO-1 or p38 inhibitor plus IM increased the apoptosis of the K562R cell line and IM-insensitive CML patients'' cells. Inhibiting HO-1 enhanced the activation of caspase-3 and poly(ADP-ribose) polymerase-1. Hence, the results support the anti-apoptotic role of HO-1 induced by NHE1 in the K562R cell line and IM-insensitive CML patients and provide a mechanism by which inducing HO-1 expression via the PKC-β/p38-MAPK pathway may promote tumor resistance to oxidative stress.  相似文献   

9.
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.  相似文献   

10.
The discovery of BCR/ABL as a driver oncogene in chronic myeloid leukemia (CML) resulted in the development of Imatinib, which, in fact, demonstrated the potential of targeting the kinase in cancers by effectively treating the CML patients. This observation revolutionized drug development to target the oncogenic kinases implicated in various other malignancies, such as, EGFR, B-RAF, KIT and PDGFRs. However, one major drawback of anti-kinase therapies is the emergence of drug resistance mutations rendering the target to have reduced or lost affinity for the drug. Understanding the mechanisms employed by resistant variants not only helps in developing the next generation inhibitors but also gives impetus to clinical management using personalized medicine. We reported a retroviral vector based screening strategy to identify the spectrum of resistance conferring mutations in BCR/ABL, which has helped in developing the next generation BCR/ABL inhibitors. Using Ruxolitinib and JAK2 as a drug target pair, here we describe in vitro screening methods that utilizes the mouse BAF3 cells expressing the random mutation library of JAK2 kinase.  相似文献   

11.
目的:探讨PESV对K562细胞BCR/ABL融合基因及凋亡调控因子bcl-2和bad表达的影响.方法:将体外培养K562细胞,经PESV处理不同时间后,流式细胞术检测细胞凋亡率,荧光定量RT-PCR检测BCR/ABL、Bcl-2、Bad mRNA水平变化.结果:与对照组相比,PESV处理后K562细胞,凋亡率增加,BCR/ABL融合基因表达降低,抗凋亡相关基因Bcl-2 mRNA表达降低,促凋亡基因Bad mRNA表达增加.结论:PESV能降低降低K562细胞BCR/ABL融合基因的表达,可能通过调节Bcl-2和Bad表达,抑制K562细胞增殖,促进其凋亡.  相似文献   

12.
融合基因 BCR/ABL在慢性粒细胞白血病的恶性转化过程中起着主导作用 .针对融合基因的 3′端构建了一个定点基因打靶质粒 ,p F2 .neo.abl(1 - 4) ,将一段可引发核内 RNA降解的元件 ,URE,定点整合到融合基因 poly(A)位点的上游 .打靶质粒经脂质体转染 K562细胞后 ,在 96孔板上进行 40 0 μg/ml G41 8筛选 ,neor克隆进一步在 2 4孔板上扩增 .以特异性引物经基因组 PCR及Southern印迹分析对阳性克隆进行检测 .研究发现阳性克隆在 96孔板内 3周其增殖状况良好 ,但在 2 4孔板内扩增一周后迅速发生死亡现象 .观察单个阳性克隆在正常培养液增殖情况 ,发现 5d后其细胞周期被完全阻抑 .研究结果说明 ,在转录后期 m RNA水平控制 BCR/ABL融合基因的表达可以抑制慢性粒细胞白血病的恶性转化 .  相似文献   

13.

Background

t(9;22) is a balanced translocation, and the chromosome 22 breakpoints (Philadelphia chromosome – Ph+) determine formation of different fusion genes that are associated with either Ph+ acute lymphatic leukemia (Ph+ ALL) or chronic myeloid leukemia (CML). The “minor” breakpoint in Ph+ ALL encodes p185BCR/ABL from der22 and p96ABL/BCR from der9. The “major” breakpoint in CML encodes p210BCR/ABL and p40ABL/BCR. Herein, we investigated the leukemogenic potential of the der9-associated p96ABL/BCR and p40ABL/BCR fusion proteins and their roles in the lineage commitment of hematopoietic stem cells in comparison to BCR/ABL.

Methodology

All t(9;22) derived proteins were retrovirally expressed in murine hematopoietic stem cells (SL cells) and human umbilical cord blood cells (UCBC). Stem cell potential was determined by replating efficiency, colony forming - spleen and competitive repopulating assays. The leukemic potential of the ABL/BCR fusion proteins was assessed by in a transduction/transplantation model. Effects on the lineage commitment and differentiation were investigated by culturing the cells under conditions driving either myeloid or lymphoid commitment. Expression of key factors of the B-cell differentiation and components of the preB-cell receptor were determined by qRT-PCR.

Principal Findings

Both p96ABL/BCR and p40ABL/BCR increased proliferation of early progenitors and the short term stem cell capacity of SL-cells and exhibited own leukemogenic potential. Interestingly, BCR/ABL gave origin exclusively to a myeloid phenotype independently from the culture conditions whereas p96ABL/BCR and to a minor extent p40ABL/BCR forced the B-cell commitment of SL-cells and UCBC.

Conclusions/Significance

Our here presented data establish the reciprocal ABL/BCR fusion proteins as second oncogenes encoded by the t(9;22) in addition to BCR/ABL and suggest that ABL/BCR contribute to the determination of the leukemic phenotype through their influence on the lineage commitment.  相似文献   

14.
15.
IntroductionCancer therapy has become increasingly focused on molecularly targeted medications. Despite the fact that multi-cytotoxic medication regimens have proven to be highly effective, many investigations in targeted treatments have focused on a single agent. The precise molecular mechanism of action of second-generation BCR–ABL tyrosine kinase inhibitors, which includes different targets and pathways, can help rationalize therapy in chronic myelogenous leukemia (CML) and other diseases affected by BCR–ABL tyrosine kinase inhibitors (TKIs).AimThe purpose of this study was to analyze if bosutinib (BOS) combined with Boc-D-FMK effectively suppressed proliferation and induced apoptosis in K562 cells to a lesser extent, implying that bosutinib is an effective leukemia treatment and that its combination with Boc-D-FMK is a mild chemotherapeutic agent against leukemia.MethodsIn this study, bosutinib was obtained together with other materials to perform a cell culture experiment with human cell lines, as well as additional drug treatment. Furthermore, cell viability (MTT assay) and flow cryometry such as viability and cell cycle assays are performed. The target profile of the dual SRC/ABL inhibitor bosutinib was studied in this study as a first kinase inhibitor to target K562 cells, which has recently been linked to the proliferation of myelogenous leukaemia cells, these results suggest the effectiveness of inhibitory activity on cell viability/proliferation, alone generated a potent value of 250 nM (39.27 ± 1.17) for 48 h as optimal dose.ResultsThe cytotoxic effect of bosutinib on the K562 cell line was assessed in vitro using the MTT assay, and the cytotoxicity was further clarified using cell viability and cell cycle assays. Guava Cell Assay software validated the activation of apoptosis. Sub-G1, G0/G1, S, and G2/M phases are depicted. Cell cycle research revealed that K562 cells treated with bosutinib accumulated much more in the sub-G1 phase, which was later validated by a drop peak at the G2/M phase.ConclusionIn conclusion, the nature of bosutinib's reduction of cancer cell growth may open the door to future research into the development of green synthesis medicines, particularly for cancer treatment.  相似文献   

16.
《Phytomedicine》2014,21(7):1004-1009
The purpose of this study was to investigate the effects of guggulsterone on cyclooxygenase-2 and P-glycoprotein mediated drug resistance in imatinib-resistant K562 cells (K562/IMA). MTT cytotoxicity assay, flow cytometry, western blot analysis, and ELISA were performed to investigate the anti-proliferative effect, the reversal action of drug resistance, and the inhibitory effect on cyclooxygenase-2, P-glycoprotein, BCR/ABL kinase, and PGE2 release in K562/IMA cells by guggulsterone. The results showed that co-administration of guggulsterone resulted in a significant increase in chemo-sensitivity of K562/IMA cells to imatinib, compared with imatinib treatment alone. Rhodamine123 accumulation in K562/IMA cells was significantly enhanced after incubation with guggulsterone (60, 120 μM), compared with untreated K562/IMA cells (p < 0.05). When imatinib (1 μM) was combined with guggulsterone (60, 120 μM), the mean apoptotic population of K562/IMA cells was 15.47% and 24.91%. It was increased by 3.82 and 6.79 times, compared with imatinib (1 μM) treatment alone. Furthermore, guggulsterone had significantly inhibitory effects on the levels of cyclooxygenase-2, P-glycoprotein and prostaglandin E2. However, guggulsterone had little inhibitory effect on the activity of BCR/ABL kinase. The present study indicates guggulsterone induces apoptosis by inhibiting cyclooxygenase-2 and down-regulating P-glycoprotein expression in K562/IMA cells.  相似文献   

17.
Resistance to Imatinib Mesylate (IM) is a major problem in Chronic Myelogenous Leukaemia management. Most of the studies about resistance have focused on point mutations on BCR/ABL. However, other types of resistance that do not imply mutations in BCR/ABL have been also described. In the present report we aim to study the role of several MAPK in IM resistance not associate to BCR/ABL mutations. Therefore we used an experimental system of resistant cell lines generated by co-culturing with IM (K562, Lama 84) as well as primary material from resistant and responder patient without BCR/ABL mutations. Here we demonstrate that Erk5 and p38MAPK signaling pathways are not implicated in the acquired resistance phenotype. However, Erk2, but not Erk1, is critical for the acquired resistance to IM. In fact, Bcr/Abl activates preferentially Erk2 in transient transfection in a dose dependent fashion through the c-Abl part of the chimeric protein. Finally, we present evidences demonstrating how constitutive activation of Erk2 is a de novo mechanism of resistance to IM. In summary our data support the use of therapeutic approaches based on Erk2 inhibition, which could be added to the therapeutic armamentarium to fight CML, especially when IM resistance develops secondary to Erk2 activation.  相似文献   

18.
Cis-diamminedichloroplatinum(II) (cisplatin, cis-DDP) is well studied anticancer drug, whose activity can be attributed to its ability to form adducts with DNA, but this drug can also form DNA-damaging free radicals, however this mechanism of cisplatin action is far less explored. Using the comet assay we studied cisplatin-induced DNA damage in the presence of spin traps: DMPO and PBN, Vitamins A, C and E as well as the tyrosine kinases inhibitor STI571 in normal human lymphocytes and leukemic K562 cells. The latter cells express the BCR/ABL fusion protein, which can be a target of the tyrosine kinase inhibitor STI571. A 20 h incubation with cisplatin at 1-10 microM induced DNA cross-links and DNA fragmentation in normal and cancer cells. Cisplatin could induce intra- and interstrand DNA-DNA cross-links as well as DNA-protein cross-links. DNA damage in K562 cells was more pronounced than in normal lymphocytes. In the presence of spin traps and vitamins we noticed a decrease in the DNA fragmentation in both cell types. Co-treatment of the lymphocytes with cisplatin at 10 microM and STI571 at 0.25 microg/ml caused an increase of DNA fragmentation in comparison with DNA fragmentation induced by cisplatin alone. In the case of K562 cells, an increase of DNA fragmentation was observed after treatment with cisplatin at 1 microM. Our results indicate that the free radicals scavengers could decrease DNA fragmentation induced by cisplatin in the normal and cancer cells, but probably they have no effect on DNA cross-linking induced by the drug. The results obtained with the BCR/ABL inhibitor suggest that K562 cells could be more sensitive towards co-treatment of cisplatin and STI571. Our results suggest also that aside from the BCR/ABL other factors such as p53 level, signal transduction pathways and DNA repair processes can be responsible for the increased sensitivity of K562 cells to cisplatin compared with normal lymphocytes.  相似文献   

19.
Mouse c-Abl type IV and human BCR/ABL proteins have been expressed in insect cells using the baculovirus system. The proteins were expressed as full-length polypeptides as judged by electrophoresis in denaturing gels. They were identified by immunoprecipitation and immunoblotting with antibodies against ABL peptides and, for BCR/ABL, against a BCR peptide. In these immunoprecipitates both proteins gave autophosphorylation principally on tyrosine. Both proteins were active tyrosine kinases, phosphorylating a variety of tyrosine-containing substrates. In fresh extracts both proteins contained phosphotyrosine as shown by Western blots with antiphosphotyrosine antibodies. Partial purification could be achieved readily using ion exchange columns, and the BCR/ABL protein, p210BCR/ABL, could be further purified to near-homogeneity using an antiphosphotyrosine column. Both enzymes required a divalent metal ion for activity. At low concentrations of ATP (2 μM) and with angiotensin II as substrate both enzymes were activated by Mn2+ or by Mg2+. No major differences in catalytic properties were found between the two isolated enzymes in solution. The oncogenic properties of p210BCR/ABL may be due to its different subcellular location, or to the presence of an intracellular inhibitor of c-Abl that does not inhibit BCR/ABL, or to altered substrate-specificity such that it can phosphorylate a unique substrate which is not recognised by c-Abl.  相似文献   

20.
The BCR–ABL fusion gene in chromosome translocation, t (9; 22), and its product, p210BCR/ABL oncogenic tyrosine kinase, is the underlying molecular mechanism that leads to the development of CML. Quantitative detection of BCR–ABL fusion gene has become a reliable approach to diagnose and monitor CML. The aim of this study was to evaluate a Roche t (9; 22) kit in CML diagnosis, monitoring treatment responses, and identification of relapse. Using BCR–ABL fusion gene-expressing K562 cells, a series of standard samples were prepared and used to establish a curve for the calculation of BCR–ABL fusion gene expression in patient samples. Our results indicate that PCR detection system with aforementioned kit has good reproducibility. In addition, the relative concentration of BCR–ABL measured by PCR was in agreement with the patient’s response to the Imatinib treatment and bone marrow morphology remission. Furthermore, we found that the relative concentration of BCR–ABL fusion gene increased 1–3 months before CML relapse was clinically and cytogenetically diagnosed, suggesting that the PCR-based BCR–ABL fusion gene detection with t (9; 22) kit is able to diagnose the recurrence of CML at least 1 month earlier than the classic cytogenetic analysis. In conclusion, detection of BCR–ABL fusion gene expression in CML using Roche t (9; 22) kit has great clinical value in the primary diagnosis, monitoring treatment responses, and identification of relapse in CML patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号