共查询到20条相似文献,搜索用时 15 毫秒
6.
Background
S. Typhi, a human-restricted Salmonella
enterica serovar, causes a systemic intracellular infection in
humans (typhoid fever). In comparison, S. Typhimurium
causes gastroenteritis in humans, but causes a systemic typhoidal illness in
mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately
regulated network of genes whose expression is required for intracellular
survival of S. enterica. Methodology/Principal FindingsUsing high performance liquid chromatography mass spectrometry (HPLC-MS/MS),
we examined the protein expression profiles of three sequenced S.
enterica strains: S. Typhimurium LT2,
S. Typhi CT18, and S. Typhi Ty2 in
PhoP-inducing and non-inducing conditions in vitro and
compared these results to profiles of
phoP−/Q−
mutants derived from S. Typhimurium LT2 and
S. Typhi Ty2. Our analysis identified 53 proteins in
S. Typhimurium LT2 and 56 proteins in
S. Typhi that were regulated in a PhoP-dependent manner. As
expected, many proteins identified in S. Typhi demonstrated
concordant differential expression with a homologous protein in
S. Typhimurium. However, three proteins (HlyE, STY1499, and
CdtB) had no homolog in S. Typhimurium. HlyE is a
pore-forming toxin. STY1499 encodes a stably expressed protein of unknown
function transcribed in the same operon as HlyE. CdtB is a cytolethal
distending toxin associated with DNA damage, cell cycle arrest, and cellular
distension. Gene expression studies confirmed up-regulation of mRNA of HlyE,
STY1499, and CdtB in S. Typhi in PhoP-inducing
conditions. Conclusions/SignificanceThis study is the first protein expression study of the PhoP virulence
associated regulon using strains of Salmonella mutant in
PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499)
that are not present in the genome of the wide host-range Typhimurium, and
includes the first protein expression profiling of a live attenuated
bacterial vaccine studied in humans (Ty800). 相似文献
7.
Background
Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal FindingsIn this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. ConclusionsSb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. 相似文献
8.
Sulfatases of enteric bacteria can provide access to heavily sulfated mucosal glycans. In this study, we show that aslA (STM0084) of Salmonella enterica serovar Typhimurium LT2 encodes a sulfatase that requires mildly acidic pH for its expression and activity. AslA is not regulated by sulfur compounds or tyramine but requires the EnvZ-OmpR and PhoPQ regulatory systems, which play an important role in pathogenesis. 相似文献
10.
In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (a w). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low a w for long periods, but minimum humectant concentrations of 8% NaCl (a w, 0.95), 96% sucrose (a w, 0.94), and 32% glycerol (a w, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal a w, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At a w values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-a w conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low a w highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low a w (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-a w storage. If Salmonella strains form filaments in food products that have low a w values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring. 相似文献
11.
Microcin 24 is an antimicrobial peptide secreted by uropathogenic Escherichia coli. Secretion of microcin 24 provides an antibacterial defense mechanism for E. coli. In a plasmid-based system using transformed Salmonella enterica, we found that resistance to microcin 24 could be seen in concert with a multiple-antibiotic resistance phenotype. This multidrug-resistant phenotype appeared when Salmonella was exposed to an E. coli strain expressing microcin 24. Therefore, it appears that multidrug-resistant Salmonella can arise as a result of an insult from other pathogenic bacteria. 相似文献
12.
In Salmonella enterica serovar Typhimurium, oxidoreductases of the thioredoxin superfamily contribute to bacterial invasiveness, intracellular replication and to the virulence in BALB/c mice as well as in the soil nematode Caenorhabditis elegans. The scsABCD gene cluster, present in many but not all enteric bacteria, codes for four putative oxidoreductases of the thioredoxin superfamily. Here we have analyzed the potential role of the scs genes in oxidative stress tolerance and virulence in S. Typhimurium. An scsABCD deletion mutant showed moderate sensitization to the redox-active transition metal ion copper and increased protein carbonylation upon exposure to hydrogen peroxide. Still, the scsABCD mutant was not significantly affected for invasiveness or intracellular replication in respectively cultured epithelial or macrophage-like cells. However, we noted a significant copper chloride sensitivity of SPI1 T3SS mediated invasiveness that strongly depended on the presence of the scs genes. The scsABCD deletion mutant was not attenuated in animal infection models. In contrast, the mutant showed a moderate increase in its competitive index upon intraperitoneal challenge and enhanced invasiveness in small intestinal ileal loops of BALB/c mice. Moreover, deletion of the scsABCD genes restored the invasiveness of a trxA mutant in epithelial cells and its virulence in C. elegans. Our findings thus demonstrate that the scs gene cluster conditionally affects virulence and underscore the complex interactions between oxidoreductases of the thioredoxin superfamily in maintaining host adaptation of S. Typhimurium. 相似文献
13.
Background
Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal FindingsTwenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B 12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/SignificanceIn this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. 相似文献
15.
Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium ( S. Typhimurium) to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer''s patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides - pmrD and pmrHFIJKLM and genes with antioxidant function - mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin''s mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks. 相似文献
16.
Clonally derived bacterial populations exhibit significant genotypic and phenotypic diversity that contribute to fitness in rapidly changing environments. Here, we show that serial passage of Salmonella enterica serovar Typhimurium LT2 ( StLT2) in broth, or within a mouse host, results in selection of an evolved population that inhibits the growth of ancestral cells by direct contact. Cells within each evolved population gain the ability to express and deploy a cryptic “orphan” toxin encoded within the rearrangement hotspot ( rhs) locus. The Rhs orphan toxin is encoded by a gene fragment located downstream of the “main” rhs gene in the ancestral strain StLT2. The Rhs orphan coding sequence is linked to an immunity gene, which encodes an immunity protein that specifically blocks Rhs orphan toxin activity. Expression of the Rhs orphan immunity protein protects ancestral cells from the evolved lineages, indicating that orphan toxin activity is responsible for the observed growth inhibition. Because the Rhs orphan toxin is encoded by a fragmented reading frame, it lacks translation initiation and protein export signals. We provide evidence that evolved cells undergo recombination between the main rhs gene and the rhs orphan toxin gene fragment, yielding a fusion that enables expression and delivery of the orphan toxin. In this manner, rhs locus rearrangement provides a selective advantage to a subpopulation of cells. These observations suggest that rhs genes play important roles in intra-species competition and bacterial evolution. 相似文献
18.
Salmonella is an important zoonotic pathogen and is a major cause of gastrointestinal diseases worldwide. The current serious problem of antibiotic abuse has prompted the search for new substitutes for antibiotics. JH-3 is a small antimicrobial peptide with broad-spectrum bactericidal activity. In this study, we showed that JH-3 has good bactericidal activity towards the clinical isolate Salmonella enterica serovar Typhimurium strain CVCC541. The minimum inhibitory concentration (MIC) of JH-3 against this bacterium was determined to be 100 μg/mL, which could decrease the number of CVCC541 cells by 1000-fold in vitro within 5 h. The transmission electron microscopy (TEM) results showed that JH-3 can damage the cell wall and membrane of CVCC541, leading to the leakage of cell contents and subsequent cell death. To measure the bactericidal activity of CVCC541-infected mice were treated intraperitoneally 40 or 10 mg/kg JH-3 at 2 h or 3 days postinfection. Our results showed that treatment with 40 mg/kg JH-3 at 2 h postinfection had the best therapeutic effect and could significantly protect mice from a lethal dose of CVCC541. Furthermore, the clinical symptoms, bacterial burden in blood and organs, and intestinal pathological changes were all decreased and were close to normal. This study examined the therapeutic effect of the antimicrobial peptide JH-3 against S. enterica CVCC541 infection for the first time and determined the therapeutic effect of different JH-3 doses and treatment times, laying the foundation for studies of new antimicrobial agents. 相似文献
19.
Colicins are toxins that mediate interference competition in microbial ecosystems. They serve as a “common good” for the entire producer population but are synthesized by only few members which pay the costs of colicin production. We have previously shown that production of colicin Ib ( cib), a group B colicin, confers a competitive advantage to Salmonella enterica serovar Typhimurium ( S. Tm) over commensal E. coli strains. Here, we studied regulation of S. Tm cib expression at the single cell level. Comparative analysis of a single- and a multicopy gfp-reporter for the colicin Ib promoter (P cib) revealed that the latter yielded optimal signal intensity for a diverse range of applications. We further validated this reporter and showed that gfp expression correlated well with colicin Ib (ColIb) protein levels in individual cells. P cib is negatively controlled by two repressors, LexA and Fur. Only a small fraction of S. Tm expressed cib under non-inducing conditions. We studied P cib activity in response to mitomycin C mediated DNA damage and iron limitation. Both conditions, if applied individually, lead to an increase in the fraction of GFP +
S. Tm, albeit an overall low fluorescence intensity. When both conditions were applied simultaneously, the majority of S. Tm turned GFP + and displayed high fluorescence intensity. Thus, both repressors individually confine cib expression to a subset of the population. Taken together, we provide the first thorough characterization of a conventional gfp-reporter to study regulation of a group B colicin at the single cell level. This reporter will be useful to further investigate the costs and benefits of ColIb production in human pathogenic S. Tm and analyze cib expression under environmental conditions encountered in the mammalian gut. 相似文献
20.
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that causes gastroenteritis in humans and a typhoid-like disease in mice and is often used as a model for the disease promoted by the human-adapted S. enterica serovar Typhi. Despite its health importance, the only S. Typhimurium strain for which the complete genomic sequence has been determined is the avirulent LT2 strain, which is extensively used in genetic and physiologic studies. Here, we report the complete genomic sequence of the S. Typhimurium strain 14028s, as well as those of its progenitor and two additional derivatives. Comparison of these S. Typhimurium genomes revealed differences in the patterns of sequence evolution and the complete inventory of genetic alterations incurred in virulent and avirulent strains, as well as the sequence changes accumulated during laboratory passage of pathogenic organisms.The genomes of related bacteria can differ in three ways: (i) gene content, where one bacterial species or strain harbors genes absent from the other organism; (ii) nucleotide substitutions within largely conserved DNA sequences, which can result in amino acid changes in orthologous proteins, form pseudogenes, and promote distinct expression patterns of genes present in the two organisms; and (iii) changes in gene arrangement, caused by inversions and translocations. These differences have been observed not only across bacterial species but also among strains belonging to the same species. Recent genomic analyses have revealed that many bacterial pathogens of humans are virtually monomorphic ( 1) and exhibit very limited sequence diversity, raising questions about the nature of the genetic changes governing distinct behaviors. Furthermore, several bacterial pathogens that have been subjected to extensive passage in the laboratory display altered virulence characteristics, but the genetic basis for these alterations remains largely unknown. Here, we address both of these questions by determining and analyzing the genome sequences of closely related isolates of Salmonella enterica serovar Typhimurium, a Gram-negative pathogen that has been used as a preeminent model to investigate basic genetic mechanisms ( 2, 8, 46, 59), as well as the interaction between bacterial pathogens and mammalian hosts ( 11, 41).The genus Salmonella is divided into two species: Salmonella bongori and Salmonella enterica, which together comprise over 2,300 serovars differing in host specificity and the disease conditions they promote in various hosts. For example, S. enterica serovar Typhi is human restricted and causes typhoid fever, whereas serovar Typhimurium is a broad-host-range organism that causes gastroenteritis in humans and a typhoid-like disease in mice. Although the complete genome sequences of 15 Salmonella enterica strains are available, there is only a single representative of S. Typhimurium—strain LT2 ( 31). Despite its wide application in genetic analysis, strain LT2 is highly attenuated for virulence in both in vitro and in vivo assays ( 52, 56), leading many investigators to use other S. Typhimurium isolates to examine the genetic basis for bacterial pathogenesis ( 11, 14, 16).Over 300 virulence genes ( 3, 5, 47) have already been identified in Salmonella enterica serovar Typhimurium 14028 (now termed S. enterica subsp. enterica serovar Typhimurium ATCC 14028), which is a descendant of CDC 60-6516, a strain isolated in 1960 from pools of hearts and livers of 4-week-old chickens (P. Fields, personal communication). Whereas strain 14028 has been typed as LT2, a designation based on phage sensitivity ( 27), the two strains were isolated from distinct sources decades apart, which makes their genealogy and exact relationship obscure. A derivative of the original 14028 strain with a rough colony morphology (due to changes in O-antigen expression) was designated 14028r to distinguish it from the original smooth strain, renamed 14028s, and was used in a genetic screen for Salmonella virulence genes because it retained lethality for mice and the ability to survive within murine macrophages. Strain 14028 was also used for the identification of Salmonella genes that were specifically expressed during infection of a mammalian host ( 30). Both 14028 and LT2 possess a 90-kb virulence plasmid promoting intracellular replication and systemic disease ( 14), but they differ in their prophage contents, as is often the case among S. Typhimurium strains ( 12, 13).To identify the individual changes that differentiate S. Typhimurium strains and to assess the nature of variation that arises during laboratory storage and passage, we determined the genome sequence of strain 14028s. This genome was then used as a reference for sequencing its progenitors, including the original source strain CDC 60-6516 and the earliest smooth and rough variants. Our analysis uncovered the genomic differences that arose during the past decades of laboratory cultivation and showed that derivatives with different virulence potentials can follow distinct patterns of sequence evolution. 相似文献
|