首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium induces epidermal keratinocyte differentiation, but the mechanism is not completely understood. We have previously demonstrated that calcium-induced human keratinocyte differentiation requires an intracellular calcium rise caused by phosphatidylinositol 3-kinase (PI3K)-dependent activation of phospholipase C-gamma1. In this study we sought to identify the upstream signaling pathway necessary for calcium activation of PI3K and its subsequent activation of phospholipase C-gamma1. We found that calcium induces the recruitment of PI3K to the E-cadherin-catenin complex at the plasma membrane of human keratinocytes. Knocking-down E-cadherin, beta-catenin, or p120-catenin expression blocked calcium activation of PI3K and phospholipase C-gamma1 and calcium-induced keratinocyte differentiation. However, knocking-down gamma-catenin expression had no effect. Calcium-induced PI3K recruitment to E-cadherin stabilized by p120-catenin at the plasma membrane requires beta-catenin but not gamma-catenin. These data indicate that the recruitment of PI3K to the E-cadherin/beta-catenin/p120-catenin complex via beta-catenin at the plasma membrane is required for calcium-induced phospholipase C-gamma1 activation and, ultimately, keratinocyte differentiation.  相似文献   

2.
Tetraspanin CD9 has been implicated in various cellular and physiological processes, including cell migration. In our previous study, we found that wound repair is delayed in CD9-null mice, suggesting that CD9 is critical for cutaneous wound healing. However, many cell types, including immune cells, endothelial cells, keratinocytes and fibroblasts undergo marked changes in gene expression and phenotype, leading to cell proliferation, migration and differentiation during wound repair, whether CD9 regulates kerationcytes migration directly remains unclear. In this study, we showed that the expression of CD9 was downregulated in migrating keratinocytes during wound repair in vivo and in vitro. Recombinant adenovirus vector for CD9 silencing or overexpressing was constructed and used to infect HaCaT cells. Using cell scratch wound assay and cell migration assay, we have also demonstrated that downregulation of CD9 promoted keratinocyte migration in vitro, whereas CD9 overexpression inhibited cell migration. Moreover, CD9 inversely regulated the activity and expression of MMP-9 in keratinocytes, which was involved in CD9-regulated keratinocyte migration. Importantly, CD9 silencing-activated JNK signaling was accompanied by the upregulation of MMP-9 activity and expression. Coincidentally, we found that SP600125, a JNK pathway inhibitor, decreased the activity and expression of MMP-9 of CD9-silenced HaCaT cells. Thus, our results suggest that CD9 is downregulated in migrating keratinocytes in vivo and in vitro, and a low level of CD9 promotes keratinocyte migration in vitro, in which the regulation of MMP-9 through the JNK pathway plays an important role.  相似文献   

3.
4.
Our previous research found that tetraspanin CD9 is downregulated in migrating epidermis during wound healing, and CD9 downregulation contributes to keratinocyte migration via matrix metalloproteinase-9 (MMP-9) activation. However, little is known about the mechanisms involved in CD9-regulated keratinocyte migration and MMP-9 activation. In this study, we revealed that the expressions of integrin subunits β5 and β6 were regulated by CD9. Furthermore, CD9 silencing triggered the switch from αvβ5 to αvβ6 integrin in HaCaT keratinocytes and CD9 overexpression reversed the switch. Importantly, integrin αvβ6 functional blocking antibody 10D5 significantly inhibited CD9 silencing-induced keratinocyte migration and MMP-9 activation, suggesting that the switch from αvβ5 to αvβ6 integrin plays a key role in CD9-regulated cell migration and MMP-9 activation in keratinocytes.  相似文献   

5.
Signaling pathways regulating the differentiation program of epidermal cells overlap widely with those activated during apoptosis. How differentiating cells remain protected from premature death, however, is still poorly defined. We show here that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated at early stages of mouse keratinocyte differentiation both in culture and in the intact epidermis in vivo. Expression of active Akt in keratinocytes promotes growth arrest and differentiation, whereas pharmacological blockade of PI3K inhibits the expression of "late" differentiation markers and leads to death of cells that would otherwise differentiate. Mechanistically, the activation of the PI3K/Akt pathway in keratinocyte differentiation depends on the activity of the epidermal growth factor receptor and Src families of tyrosine kinases and the engagement of E-cadherin-mediated adhesion. During this process, PI3K associates increasingly with cadherin-catenin protein complexes bearing tyrosine phosphorylated YXXM motifs. Thus, the PI3K signaling pathway regulates the choice between epidermal cell differentiation and death at the cross-talk between tyrosine kinases and cadherin-associated catenins.  相似文献   

6.
Extracellular Ca(2+) (Ca(2+)(o)) is a critical regulator that promotes differentiation in epidermal keratinocytes. The calcium sensing receptor (CaR) is essential for mediating Ca(2+) signaling during Ca(2+)(o)-induced differentiation. Inactivation of the endogenous CaR-encoding gene CASR by adenoviral expression of a CaR antisense cDNA inhibited the Ca(2+)(o)-induced increase in intracellular free calcium (Ca(2+)(i)) and expression of terminal differentiation genes, while promoting apoptosis. Ca(2+)(o) also instigates E-cadherin-mediated cell-cell adhesion, which plays a critical role in orchestrating cellular signals mediating cell survival and differentiation. Raising Ca(2+)(o) concentration ([Ca(2+)](o)) from 0.03 to 2 mm rapidly induced the co-localization of alpha-, beta-, and p120-catenin with E-cadherin in the intercellular adherens junctions (AJs). To assess whether CaR is required for the Ca(2+)(o)-induced activation of E-cadherin signaling, we examined the impact of CaR inactivation on AJ formation. Decreased CaR expression suppressed the Ca(2+)(o)-induced AJ formation, membrane translocation, and the complex formation of E-cadherin, catenins, and the phosphatidylinositol 3-kinase (PI3K), although the expression of these proteins was not affected. The assembly of the E-cadherin-catenin-PI3K complex was sensitive to the pharmacologic inhibition of Src family tyrosine kinases but was not affected by inhibition of Ca(2+)(o)-induced rise in Ca(2+)(i). Inhibition of CaR expression blocked the Ca(2+)(o)-induced tyrosine phosphorylation of beta-, gamma-, and p120-catenin, PI3K, and the tyrosine kinase Fyn and the association of Fyn with E-cadherin and PI3K. Our results indicate that the CaR regulates cell survival and Ca(2+)(o)-induced differentiation in keratinocytes at least in part by activating the E-cadherin/PI3K pathway through a Src family tyrosine kinase-mediated signaling.  相似文献   

7.
Summary Epidermal growth factor receptor (EGFR) signaling regulates a variety of cellular functions, including proliferation, gene expression, and differentiation. Infection of laryngeal epithelial cells by human papillomaviruses causes recurrent respiratory papillomas, benign tumors characterized by an altered pattern of differentiation. Papilloma cells overexpress the EGFR and have constitutively active extracellular signal-regulated kinase (ERK) and enhanced phosphatidylinositol 3-kinase (PI3K) activity, but overexpression of the lipid phosphatase PTEN (Phosphatase and Tensin Homolog) reduces activation of Akt by PI3K. We hypothesized that the altered differentiation of papillomas reflects these changes in signaling from the EGFR-ERK and PI3K-Akt pathways and that one or both of these pathways is required for the normal differentiation process in mucosal epithelium. Inhibiting either the enzymatic activity or the synthesis of PI3K in uninfected laryngeal cells blocked expression of keratin-13 (K13), a protein induced during normal differentiation. In contrast, inhibiting activation of ERK had minimal effect. Using ribonucleic acid interference to reduce protein levels of integrinlinked kinase 1 or phosphoinositide-dependent protein kinase 1, intermediates in the activation of Akt by PI3K, or reducing levels of Akt-1 itself did not inhibit K13 expression by normal laryngeal keratinocytes. We conclude that PI3K activation is an important regulator of expression of K13, a marker for the normal differntiation process in human mucosal keratinocytes, that this function does not require activation of Akt-1, and that the failure to express K13 in papilloma cells is not because of reduction in activated Akt.  相似文献   

8.
The survival and growth of epithelial cells depend on adhesion to the extracellular matrix. Because epidermal keratinocytes differentiate as they leave the basement membrane, an adhesion signal may regulate the initiation of differentiation. Phosphatidylinositol 3-kinase (PI3K) is a fundamental signaling molecule that regulates the adhesion signal. Transfection of a dominant negative form of PI3K into keratinocytes using an adenovirus vector resulted in significant morphological changes comparable to differentiation and the induction of differentiation markers, keratin (K) 1 and K10. In turn, transfection with the constitutively active form of PI3K almost completely abolished the induction of K1 and K10 by differentiation in suspension cultures using polyhydroxyethylmethacrylate-coated dishes. PI3K activity was lost in suspension culture, except by cells bearing the constitutively active form of PI3K. These data demonstrate that blockade of PI3K results in differentiation and that activation of PI3K prevents differentiation. Furthermore, expression of the dominant negative form of PI3K significantly inhibited keratinocyte adhesion to the extracellular matrix and reduced the surface expression of alpha(6) and beta(1) integrins in suspension culture. Moreover, expression of the active form of PI3K restored the mRNA levels of adhesion molecules that were reduced in suspension culture, including alpha(3), alpha(6), and beta(1) integrins, BP180, and BP230. In conclusion, loss of PI3K activity results in keratinocytes leaving the basement membrane and the initiation of a "default" differentiation mechanism.  相似文献   

9.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

10.
SHIP is an SH2-containing inositol-5-phosphatase expressed in hematopoietic cells. It hydrolyzes the PI3K product PI(3,4,5)P(3) and blunts the PI3K-initiated signaling pathway. Although the PI3K/Akt pathway has been shown to be important for osteoclastogenesis, the molecular events involved in osteoclast differentiation have not been revealed. We demonstrate that Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. Inhibition of the PI3K by LY294002 reduces formation of osteoclasts and attenuates the expression of NFATc1, but not that of c-Fos. Conversely, overexpression of Akt in bone marrow-derived macrophages (BMMs) strongly induced NFATc1 expression without affecting c-Fos expression, suggesting that PI3K/Akt-mediated NFATc1 induction is independent of c-Fos during RANKL-induced osteoclastogenesis. In addition, we found that overexpression of Akt enhances formation of an inactive form of GSK3β (phospho-GSK3β) and nuclear localization of NFATc1, and that overexpression of a constitutively active form of GSK3β attenuates osteoclast formation through downregulation of NFATc1. Furthermore, BMMs from SHIP knockout mice show the increased expression levels of phospho-Akt and phospho-GSK3β, as well as the enhanced osteoclastogenesis, compared with wild type. However, overexpression of a constitutively active form of GSK3β attenuates RANKL-induced osteoclast differentiation from SHIP-deficient BMMs. Our data suggest that the PI3K/Akt/GSK3β/NFATc1 signaling axis plays an important role in RANKL-induced osteoclastogenesis.  相似文献   

11.
结肠腺瘤息肉蛋白(APC)是一个肿瘤抑制因子,它不仅参与Wnt信号通路的传导,而且对细胞粘附、细胞骨架的组织和迁移等都有影响.APC突变发生于大多数结肠癌中.为了探讨APC突变对细胞粘附的影响及机制,本研究利用细胞粘附实验分析了MDCK-APC-N1和对照MDCK-GFP稳定表达细胞株系的细胞粘附情况.实验结果显示,在MDCK细胞中过表达APC-N1导致细胞-细胞间的粘附减少,细胞-基质间的粘附增加.荧光定量PCR和Western印迹实验表明,在MDCK-APC+N1细胞中,E-cadherin表达水平降低,CD29、P-FAK (Y397)、β-catenin和 P-AKT (T308)表达水平升高. 在MDCK-APC-N1细胞中,敲减β-catenin导致E-cadherin表达量升高,而CD29表达没有明显变化.进一步利用PI3K抑制剂LY294002处理MDCK-APC-N1细胞,结果发现,E-cadherin表达量明显升高,CD29表达量明显降低.这些结果揭示,APC-N1可活化 PI3K/AKT 信号通路,进而改变粘附蛋白E-cadherin和CD29影响细胞粘附.  相似文献   

12.
13.
14.
15.
Integrins are involved in several ways in keratinocyte physiology, including cell motility. CD9 is a member of the tetraspanin protein family which is found in association with other transmembrane proteins like the integrins. CD9 is expressed in the epidermal tissue, but this expression is not regulated by differentiation. The present work focuses on association of CD9 with the integrin alpha6beta4 in keratinocytes. In vivo, CD9 does not co-localize with alpha6beta4, and is not internalized with the integrin upon basal detachment with dispase. In vitro, CD9 is found partly in co-localization with alpha6beta4 and is internalized with the integrin after keratinocyte detachment with dispase. Using blocking antibodies in a phagokinetic tracks assay, we show that CD9, and to a lesser extent alpha6beta4, but not the tetraspanin CD82, promote motility of subconfluent keratinocytes on collagen I. Our observations also suggest that CD9 is involved in the formation of lamellipodia. We also report that the phorbol ester TPA has no effect on CD9 expression and association with alpha6beta4, but increases keratinocyte motility, possibly through modulation of integrin subunits expression, or through upregulation of collagenase-1 expression. Together, these results confirm that CD9 associates with alpha6beta4 in cultured keratinocytes, possibly in order to regulate the function of the integrin, and that CD9 is involved in keratinocyte motility on collagen. The data suggest that regulation of adhesion characteristics by CD9 in keratinocytes may play a role in epidermal repair.  相似文献   

16.
17.
Hepatoma-derived growth factor (HDGF) stimulates the migration, invasion and metastasis in several types of cancer cells. However, the mechanism underlying HDGF-stimulated migration remains unclear. In this study, we investigated the influence of HDGF on cytoskeleton remodeling and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in non-transformed NIH/3T3 cells. Exogenous HDGF promoted the migration and the formation of dorsal ruffles and podosome rosettes. Besides, HDGF supply increased the PI3K expression and Akt phosphorylation in dose- and time-dependent manners. Application of LY294002, a PI3K inhibitor, attenuated the HDGF-induced migration, dorsal ruffles and podosome rosettes formation. Consistently, the HDGF-overexpressing NIH/3T3 transfectants exhibited significantly increased motility and elevated PI3K/Akt activities, which were repressed by LY294002 or adenovirus-mediated overexpression of endogenous PI3K antagonist, PTEN. In summary, HDGF elicits the activation of PI3K/Akt signaling cascade, thereby promoting cytoskeleton remodeling to stimulate cellular migration.  相似文献   

18.
Kang SK  Lee JY  Chung TW  Kim CH 《FEBS letters》2004,577(3):361-366
Transglutaminase 2 (TG2) is a GTP-binding protein with transglutaminase activity. Despite advances in the characterization of TG2 functions and their impact on cellular processes, the role of TG2 in Human chronic myelogenous leukemia K562 cell line is still poorly understood. To understand the biological significance of TG2 during the differentiation of K562 cells, we established and characterized K562 cells that specifically express TG2. Non-transfected K562 cells showed the increase of membrane-bound-TG2 level after 3 days in the response to Hemin and all trans-retinoic acid (tRA), indicating that membrane recruitment of TG2 is occurred during the erythroid differentiation. However, membrane recruitment of TG2 in TG2-transfected cells revealed within earlier time period, compared with that in vector-transfected cells. The ability of membrane-bound-TG2 to be photoaffinity-labeled with [alpha-32P]GTP was also increased in TG2-transfected cells. TG2-transfected cells activated Akt phosphorylation and inactivated ERK1/2 phosphorylation, compared with vector-transfected cells. Furthermore, phosphorylation of CREB, one of the Akt substrates, was increased in TG2-transfected cells and this phenomenon was confirmed by RT-PCR analysis of several marker genes related with erythroid lineage in the absence of PI3K specific inhibitor, Wortmannin, indicating that PI3K/Akt signaling pathway also involved in the differentiation of the cell. Finally, as results of benzidine positive staining as well as hemoglobinization analysis, overexpression of TG2 revealed acceleration of the erythroid differentiation of K562 cells. Taken together, there was no increased TG2 expression level in the response of Hemin/tRA and delayed differentiation in vector transfected cells than in TG2-transfected cells, suggesting that suppression of TG2 expression may retard the erythroid differentiation of K562 cells. Therefore, our study may give a new insight for another aspect of the development of this disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号