首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haemophilus parasuis, the causative agent of Glässer''s disease, is one of the early colonizers of the nasal mucosa of piglets. It is prevalent in swine herds, and lesions associated with disease are fibrinous polyserositis and bronchopneumonia. Antibiotics are commonly used in disease control, and resistance to several antibiotics has been described in H. parasuis. Prediction of H. parasuis virulence is currently limited by our scarce understanding of its pathogenicity. Some genes have been associated with H. parasuis virulence, such as lsgB and group 1 vtaA, while biofilm growth has been associated with nonvirulent strains. In this study, 86 H. parasuis nasal isolates from farms that had not had a case of disease for more than 10 years were obtained by sampling piglets at weaning. Isolates were studied by enterobacterial repetitive intergenic consensus PCR and determination of the presence of lsgB and group 1 vtaA, biofilm formation, inflammatory cell response, and resistance to antibiotics. As part of the diversity encountered, a novel 2,661-bp plasmid, named pJMA-1, bearing the blaROB-1 β-lactamase was detected in eight colonizing strains. pJMA-1 was shown to share a backbone with other small plasmids described in the Pasteurellaceae, to be 100% stable, and to have a lower biological cost than the previously described plasmid pB1000. pJMA-1 was also found in nine H. parasuis nasal strains from a separate collection, but it was not detected in isolates from the lesions of animals with Glässer''s disease or in nontypeable Haemophilus influenzae isolates. Altogether, we show that commensal H. parasuis isolates represent a reservoir of β-lactam resistance genes which can be transferred to pathogens or other bacteria.  相似文献   

2.
Haemophilus parasuis is a member of the family Pasteurellaceae and is the etiologic agent of Glässer’s disease in pigs, a systemic syndrome associated with only a subset of isolates. The genetic basis for virulence and systemic spread of particular H. parasuis isolates is currently unknown. Strain 29755 is an invasive isolate that has long been used in the study of Glässer’s disease. Accordingly, the genome sequence of strain 29755 is of considerable importance to investigators endeavoring to understand the molecular pathogenesis of H. parasuis. Here we describe the features of the 2,224,137 bp draft genome sequence of strain 29755 generated from 454-FLX pyrosequencing. These data comprise the first publicly available genome sequence for this bacterium.  相似文献   

3.
Haemophilus parasuis is the causative agent of Glässer''s disease, a systemic disease of pigs, and is also associated with pneumonia. H. parasuis can be classified into 15 different serovars. Here we report, from the 15 serotyping reference strains, the DNA sequences of the loci containing genes for the biosynthesis of the group 1 capsular polysaccharides, which are potential virulence factors of this bacterium. We contend that these loci contain genes for polysaccharide capsule structures, and not a lipopolysaccharide O antigen, supported by the fact that they contain genes such as wza, wzb, and wzc, which are associated with the export of polysaccharide capsules in the current capsule classification system. A conserved region at the 3′ end of the locus, containing the wza, ptp, wzs, and iscR genes, is consistent with the characteristic export region 1 of the model group 1 capsule locus. A potential serovar-specific region (region 2) has been found by comparing the predicted coding sequences (CDSs) in all 15 loci for synteny and homology. The region is unique to each reference strain with the exception of those in serovars 5 and 12, which are identical in terms of gene content. The identification and characterization of this locus among the 15 serovars is the first step in understanding the genetic, molecular, and structural bases of serovar specificity in this poorly studied but important pathogen and opens up the possibility of developing an improved molecular serotyping system, which would greatly assist diagnosis and control of Glässer''s disease.  相似文献   

4.
Zhou M  Zhang Q  Zhao J  Jin M 《PloS one》2012,7(3):e32580
Haemophilus parasuis is the causative agent of Glässer''s disease of pigs, a disease associated with fibrinous polyserositis, polyarthritis and meningitis. We report here H. parasuis encodes two copies of cytolethal distending toxins (Cdts), which these two Cdts showed the uniform toxin activity in vitro. We demonstrate that three Cdt peptides can form an active tripartite holotoxin that exhibits maximum cellular toxicity, and CdtA and CdtB form a more active toxin than CdtB and CdtC. Moreover, the cellular toxicity is associated with the binding of Cdt subunits to cells. Further analysis indicates that CdtC subunit contains an atypical cholesterol recognition/interaction amino acid consensus (CRAC) region. The mutation of CRAC site resulted in decreased cell toxicity. Finally, western blot analysis show all the 15 H. parasuis reference strains and 109 clinical isolates expressed CdtB subunit, indicating that Cdt is a conservative putative virulence factor for H. parasuis. This is the first report of the molecular and cellular basis of Cdt host interactions in H. parasuis.  相似文献   

5.
6.
Haemophilus parasuis is the agent responsible for causing Glässer''s disease, but little is known about the pathogenic determinants of this major pig disease. Here we describe, for the pathogenic strain Nagasaki, the molecular characterization of 13 trimeric autotransporters as assessed by the presence of YadA C-terminal translocator domains which were classified into three groups. All passenger domains possess motifs and repeats characteristic of adhesins, hemagglutinins, and invasins with various centrally located copies of collagen-like repeats. This domain architecture is shared with two trimeric autotransporter proteins of H. somnus 129Pt. Genomic comparison by microarray hybridization demonstrated homologies among H. parasuis virulent strains and high divergence with respect to nonvirulent strains. Therefore, these genes were named vtaA (virulence-associated trimeric autotransporters). The sequencing of 17 homologous vtaA genes of different invasive strains highlighted an extensive mosaic structure. Based also on the presence of DNA uptake signal sequences within the vtaA genes, we propose a mechanism of evolution by which gene duplication and the accumulation of mutations and recombinations, plus the lateral gene transfer of the passenger domain, led to the diversity of this multigene family. This study provides insights to help understand the tissue colonization and invasiveness characteristic of H. parasuis pathogenic strains.Adhesion to host tissues is an important step for bacterial colonization and survival (23, 39). Structures present at the surface of bacteria called adhesins mediate interactions with receptors of host cells. Adhesins can be very different in nature; among them a family of trimeric autotransporters, also termed AT-2 (21), are present in gram-negative bacteria (12). AT-2 adhesins have the capacity to bind eukaryotic cells (10, 28) as well as extracellular matrix proteins (45). These proteins are made up of an N-terminal signal peptide, a passenger domain, and a C-terminal translocator domain responsible for the pore-forming capacity in the outer membrane (12). The passenger domain often contains multiple repeats (Hep_Hag) and motifs (HIM) characteristic of adhesins and hemagglutinins (4). Although there is considerable amino acid diversity between the translocator domains of different bacterial species, they form a β-barrel through which the passenger domain transits (22, 55). Their immunogenicity makes them good candidates for vaccine development (9, 11). Trimeric autotransporters have been fully or partially characterized in terms of structure, function, and immunological properties for Haemophilus influenzae, Moraxella catarrhalis, Haemophilus ducreyi, Neisseria meningitidis, or Yersinia spp. However, not all studies of pathogenic bacteria benefit from the wealth of information generated for important human pathogens. This is the case for Haemophilus parasuis, a gram-negative bacillus classified in the Pasteurellaceae family, where the molecules which mediate adhesion to host tissues or virulence factors are largely unknown.H. parasuis is commonly found in the upper respiratory tract of healthy conventional pigs. Some strains can migrate into the lungs, causing pneumonia (34), and disseminate to produce a severe systemic disease, characterized by fibrinous polyserositis, arthritis, and meningitis, known as Glässer''s disease (52). Fifteen serovars have been described so far, but many strains cannot be typed with the current sera (25). Although there is not a strict correlation between the expression of a given serovar and the degree of pathogenicity of H. parasuis strains, it is commonly stated that bacteria exhibiting serovar 5 are highly virulent, while strains of serovar 3 are not virulent (41). Another striking feature of this bacterium is its genetic variability. When a multilocus typing method was applied to 120 field and 11 reference strains, 109 sequence types were found. Interestingly, two divergent branches were observed, one of them including most of the virulent strains isolated from systemic sites of diseased animals (37). Although molecules which mediate adhesion to host tissues or virulence factors are largely unknown in H. parasuis, a recent study has shown that H. parasuis strains of serotypes 5 and 4 (often associated with virulence) preferentially bind and invade porcine brain endothelial cells in vitro. Since the invasion was not abolished by proteinase K treatment, it was concluded that the putative invasin was not likely to be a protein (54). However, many of the described bacterial adhesins are proteins (39).In this report, we describe 13 paralog genes of the highly pathogenic strain H. parasuis Nagasaki and 17 homologues from different invasive strains coding for VtaA proteins, which, unusually for AT-2, contained collagen triple helix repeats. The passenger domains were relatively conserved with vtaA homologues from pathogenic strains but highly divergent with those of nonpathogenic strains. Furthermore, this multigene family has likely evolved by the duplication and lateral gene transfer of at least modules of the passenger domain.  相似文献   

7.
Haemophilus parasuis (H. parasuis) is a common commensal in the upper respiratory tract of pigs, but causes Glässer's disease in stress conditions. To date, many studies focused on the immune evasion and virulence of H. parasuis; very few have focused on the role autophagy played in H. parasuis infection, particularly in porcine alveolar macrophages (PAMs). In this study, a PAM cell line, 3D4/21 cells were used to study the role of autophagy in H. parasuis infection. 3D4/21 cells tandemly expressing GFP, mCherry, and LC3 were infected with H. parasuis serovar 5 (Hps5). Western blot analysis and confocal and transmission electron microscopy showed that H. parasuis infection effectively induces autophagy. Using Hps strains of varying virulence (Hps4, Hps5, and Hps7) and UV‐inactivated Hps5, we demonstrated that autophagy is associated with the internalisation of living virulent strains into cells. In 3D4/21 cells pretreated with rapamycin and 3‐MA then infected by Hps4, Hps5, and Hps7, we demonstrated that autophagy affects invasion of Hparasuis in cells. AMPK signal results showed that Hps5 infection can upregulate the phosphorylation level of AMPK, which is consistent with the autophagy development. 3D4/21 cells pretreated with AICAR or Compound C then infected by Hps5 revealed that the autophagy induced by Hps5 infection is associated with the AMPK pathway. Our study contributes to the theoretical basis for the study of H. parasuis pathogenesis and development of novel drugs target for prevention Glässer's disease.  相似文献   

8.
Complete Genome Sequence of Haemophilus parasuis SH0165   总被引:2,自引:0,他引:2  
Haemophilus parasuis is the causative agent of Glässer's disease, which produces big losses in swine populations worldwide. H. parasuis SH0165, belonging to the dominant serovar 5 in China, is a clinically isolated strain with high-level virulence. Here, we report the first completed genome sequence of this species.  相似文献   

9.
Haemophilus parasuis is the etiological agent of Glässer’s disease, often involved in pneumonia, and also an early colonizer of the upper respiratory tract of healthy domestic pigs. Little information is available on H. parasuis in wild boars. The aim of the present study was to evaluate H. parasuis infection in wild boars in Germany. Tissue samples from the lungs and tonsils of 531 wild boars from 52 hunts during the hunting seasons 2004/2005 to 2006/2007 were examined independently for H. parasuis by PCR because H. parasuis is a fastidious organism, which hampers its isolation from clinical samples. The overall prevalence of H. parasuis in wild boars in Germany was 74.2%. H. parasuis was detected in 69.1% of tonsils and 40.4% of lungs. In conclusion, the present study demonstrates a wide distribution of H. parasuis in German wild boar populations and further research is required to understand the virulence of H. parasuis strains in wild boars, as well as the distribution and potential exchange of different strains between wild boars and domestic pigs.  相似文献   

10.
Haemophilus parasuis is the aetiological agent of Glässer's disease, which has received more attention in the past decade due to the increasing economic losses in the pig industry worldwide. Little is known about the mechanisms by which H. parasuis survives in the host. In this study, selective capture of transcribed sequences (SCOTS) was used to identify H. parasuis genes upregulated in necrotic porcine lung 7 days post infection. Thirty‐eight genes were identified that were upregulated during infection of the lung tissue of pigs, compared with growth in culture medium. In two examples chosen gene expression was not confined to the lungs, there being variation between tissues. The data support biofilm formation being an important mode of growth for colonization and/or persistence. Results from the in vitro studies suggest that, as for other pathogens, iron and oxygen restriction and heat stress are important environmental signals to regulate gene expression. This study has identified genes of H. parasuis that are upregulated during infection of porcine lung tissue as compared with in vitro growth conditions.  相似文献   

11.
Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structures has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.  相似文献   

12.
13.
Monoclonal antibody (MAb) 1B3 against Haemophilus parasuis (H. parasuis) was generated by fusing SP2/0 murine myeloma cells and spleen cells from BALB/c mice immunized with the whole-bacterial-cell suspension of H. parasuis HS80 (serotype 5). The MAb 1B3 showed strong reactivity with 15 serotype reference strains of H. parasuis using Dot blot and Western blot analysis. Immunoprecipitation and protein spectral analysis indicated that MAb 1B3 recognized by Oligopeptide permease A (OppA) belongs to the ATP binding cassette transporter family. In addition, a linear B-cell epitope recognized by MAb 1B3 was identified by the screening of a phage-displayed 12-mer random peptide library. Sequence analysis showed that MAb 1B3 was recognized by phages-displaying peptides with the consensus motif KTPSEXR (X means variable amino acids). Its amino acid sequence matched 469KTPAEAR475 of H. parasuis OppA protein. A series of progressively truncated peptides were synthesized to define the minimal region that was required for MAb 1B3 binding. The epitope was highly conserved in OppA protein sequences from the isolated H. parasuis strains, which was confirmed by alignment analysis. Furthermore, the minimal linear epitope was highly specific among 75 different bacterial strains as shown in sequence alignments. These results indicated MAb 1B3 might be potentially used to develop serological diagnostic tools for H. parasuis.  相似文献   

14.
Haemophilus parasuis is the causative agent of Glässer's disease and is a major source of economic losses in the swine industry each year. To enhance the production of an inactivated vaccine against H. parasuis, the availability of nicotinamide adenine dinucleotide (NAD) must be carefully controlled to ensure a sufficiently high cell density of H. parasuis. In the present study, the real-time viable cell density of H. parasuis was calculated based on the capacitance of the culture. By assessing the relationship between capacitance and viable cell density/NAD concentration, the NAD supply rate could be adjusted in real time to maintain the NAD concentration at a set value based on the linear relationship between capacitance and NAD consumption. The linear relationship between cell density and addition of NAD indicated that 7.138 × 109 NAD molecules were required to satisfy per cell growth. Five types of NAD supply strategy were used to maintain different NAD concentration for H. parasuis cultivation, and the results revealed that the highest viable cell density (8.57, OD600) and cell count (1.57 × 1010 CFU/mL) were obtained with strategy III (NAD concentration maintained at 30 mg/L), which were 1.46- and 1.45- times more, respectively, than cultures with using NAD supply strategy I (NAD concentration maintained at 10 mg/L). An extremely high cell density of H. parasuis was achieved using this NAD supply strategy, and the results demonstrated a convenient and reliable method for determining the real-time viable cell density relative to NAD concentration. Moreover, this method provides a theoretical foundation and an efficient approach for high cell density cultivation of other auxotroph bacteria.  相似文献   

15.
Escherichia coli O157:H7 is, to date, the major E. coli serotype causing food-borne human disease worldwide. Strains of O157 with other H antigens also have been recovered. We analyzed a collection of historic O157 strains (n = 400) isolated in the late 1980s to early 1990s in the United States. Strains were predominantly serotype O157:H7 (55%), and various O157:non-H7 (41%) serotypes were not previously reported regarding their pathogenic potential. Although lacking Shiga toxin (stx) and eae genes, serotypes O157:H1, O157:H2, O157:H11, O157:H42, and O157:H43 carried several virulence factors (iha, terD, and hlyA) also found in virulent serotype E. coli O157:H7. Pulsed-field gel electrophoresis (PFGE) showed the O157 serogroup was diverse, with strains with the same H type clustering together closely. Among non-H7 isolates, serotype O157:H43 was highly prevalent (65%) and carried important enterohemorrhagic E. coli (EHEC) virulence markers (iha, terD, hlyA, and espP). Isolates from two particular H types, H2 and H11, among the most commonly found non-O157 EHEC serotypes (O26:H11, O111:H11, O103:H2/H11, and O45:H2), unexpectedly clustered more closely with O157:H7 than other H types and carried several virulence genes. This suggests an early divergence of the O157 serogroup to clades with different pathogenic potentials. The appearance of important EHEC virulence markers in closely related H types suggests their virulence potential and suggests further monitoring of those serotypes not implicated in severe illness thus far.  相似文献   

16.
Aims: To develop a modified pulsed‐field gel electrophoresis (PFGE) method for characterizing Haemophilus parasuis isolates. Methods and Results: A modified PFGE procedure was designed using CpoI to generate restriction maps of H. parasuis genomic DNA. This approach was used to characterize 47 H. parasuis clinical isolates and 15 reference strains. All strains could be typed by this method, and the procedure was completed in 36 h. A total of 39 different PFGE patterns were identified among 47 epidemiologically unrelated clinical isolates. Conclusions: The modified PGFE described in this report efficiently characterized H. parasuis isolates. This method can be adopted for studying the epidemiology of Glässer’s disease outbreaks in addition to differentiating and classifying previously untypeable H. parasuis isolates. Significance and Impact of the Study: The modified PFGE method described is a novel means of characterizing H. parasuis isolates. It is also a highly discriminatory molecular typing method (discriminatory index of 0·98) that can overcome the limitations of serotyping.  相似文献   

17.
The current study was carried out to evaluate the phenotypic and genotypic characterization of avian pathogenic Escherichia coli recovered from Riyadh, Saudi Arabia. During the period of 10th February–30th May 2015, 70 E. coli strains were isolated from chicken farms located in Riyadh, Saudi Arabia. All strains were tested phenotypically by standard microbiological techniques, serotyped and the virulence genes of such strains were detected by polymerase chain reaction (PCR). Most of the recovered strains from chickens belonged to serotype O111:K58 25 strains (35.7%), followed by serotype O157:H7 13 strains (18.57%), followed by serotype O114:K90 10 strains (14.29%), then serotype O126:K71 9 strains (12.9%), serotype O78:K80 8 strains (11.43%) and in lower percentage serotype O114:K90 and O119:K69 5 strains (7.14%). The virulence genotyping of E. coli isolates recovered from broilers revealed the presence of the uidA gene in all the field isolates (6 serovars) examined in an incidence of 100%, as well as the cvaC gene was also present in all field isolates (6 serovars), while the iutA gene and the iss gene were detected in 5 out of 6 field serovars in an incidence of 81.43% and 64.29%, respectively. Phenotypical examination of the other virulence factors revealed that 65 isolates were hemolytic (92.9%), as well as 15 isolates (21.42%) were positive for enterotoxin production. Meanwhile, 21 isolates (30%) were positive for verotoxin production, 58 isolates (82.86%) for the invasiveness and 31 isolates (44.29%) for Congo red binding activities of the examined serotypes.  相似文献   

18.
Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases.  相似文献   

19.
Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intact fliC gene, only one strain retained swimming motility. Diverse stx subtypes were identified, including stx1a, stx2a, stx2c, and stx2e. Although no correlation was detected between the stx genotype and Stx1 production, high Stx2 production was detected mainly in strains carrying stx2a only and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagic E. coli were conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.  相似文献   

20.
Actinobacillus pleuropneumoniae (App) is a Gram-negative bacterium that causes porcine pleuropneumonia, leading to economic losses in the swine industry. Due to bacterial resistance to antibiotics, new treatments for this disease are currently being sought. Lactoferrin (Lf) is an innate immune system glycoprotein of mammals that is microbiostatic and microbicidal and affects several bacterial virulence factors. The aim of this study was to investigate whether bovine iron-free Lf (BapoLf) has an effect on the growth and virulence of App. Two serotype 1 strains (reference strain S4074 and the isolate BC52) and a serotype 7 reference strain (WF83) were analyzed. First, the ability of App to grow in iron-charged BLf was discarded because in vivo, BapoLf sequesters iron and could be a potential source of this element favoring the infection. The minimum inhibitory concentration of BapoLf was 14.62, 11.78 and 10.56 µM for the strain BC52, S4074 and WF83, respectively. A subinhibitory concentration (0.8 µM) was tested by assessing App adhesion to porcine buccal epithelial cells, biofilm production, and the secretion and function of toxins and proteases. Decrease in adhesion (24–42 %) was found in the serotype 1 strains. Biofilm production decreased (27 %) for only the strain 4074 of serotype 1. Interestingly, biofilm was decreased (60–70 %) in the three strains by BholoLf. Hemolysis of erythrocytes and toxicity towards HeLa cells were not affected by BapoLf. In contrast, proteolytic activity in all strains was suppressed in the presence of BapoLf. Finally, oxytetracycline produced synergistic effect with BapoLf against App. Our results suggest that BapoLf affects the growth and several of the virulence factors in App.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号