Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species). 相似文献
In Rhodobacter capsulatus, two triple mutants were constructed. In these non-photosynthetic mutants, two amino acids near the quinone QB have been mutated to two alanines: in the QA site have been mutated to alanine-aspartic acid and glutamic acid-alanine. Several spontaneous mutants derived from original constructs were selected. DNA sequencing experiments on originally designed mutant strains and their spontaneous mutants were performed to identify possible genetic reversions at quinone site-specific locations. Constructed mutants carry double alanines in the QB site and single alanine in the QA site. Spontaneous mutants carry additional compensating mutations, aspartic acid (L225), cysteine (M231), and serine (M231) far from QA and QB sites, which may be involved in quinone binding by the photosynthetic reaction centres. 相似文献
The Asua Valley is an area on the outskirts of Bilbao where industry and small farms still coexist despite decades of serious environmental pollution. The present study was carried out to estimate the risk to which the residents of the area are exposed as a result of soil/dust ingestion and consumption of locally grown fresh produce, and, on the basis of this data, to delimit the areas that might require environmental clean-up. The relation between lead and cadmium content in soil and plant samples was assessed by multiple linear regression. The level of soil lead content for proposing intervention was determined by assessing the exposure of young children due to soil ingestion, assuming a “central-estimate” ingestion rate of 110?mg/day. Vegetable sampling was stratified according to the level of cadmium in the soil. The intervention content of cadmium was established as the midpoint of the soil sampling stratum previous to the one registering a vegetable consumption hazard quotient of 1; in this interval the intake reached 57% of the TDI. 相似文献
Schemes designed to make farming landscapes less hostile to wildlife have been questioned because target taxa do not always respond in the expected manner. Microbats are often overlooked in this process, yet persist in agricultural landscapes and exert top-down control of crop pests. We investigated the relationship between microbats and measures commonly incorporated into agri-environment schemes, to derive management recommendations for their ongoing conservation. We used acoustic detectors to quantify bat species richness, activity, and feeding in 32 linear remnants and adjacent fields across an agricultural region of New South Wales, Australia. Nocturnal arthropods were simultaneously trapped using black-light traps. We recorded 91,969 bat calls, 17,277 of which could be attributed to one of the 13 taxa recorded, and 491 calls contained feeding buzzes. The linear remnants supported higher bat activity than the fields, but species richness and feeding activity did not significantly differ. We trapped a mean 87.6 g (±17.6 g SE) of arthropods per night, but found no differences in biomass between land uses. Wider linear remnants with intact native vegetation supported more bat species, as did those adjacent to unsealed, as opposed to sealed roads. Fields of unimproved native pastures, with more retained scattered trees and associated hollows and logs, supported the greatest bat species richness and activity. We conclude that the juxtaposition of linear remnants of intact vegetation and scattered trees in fields, coupled with less-intensive land uses such as unimproved pastures will benefit bat communities in agricultural landscapes, and should be incorporated into agri-environment schemes. In contrast, sealed roads may act as a deterrent. The “wildlife friendly farming” vs “land sparing” debate has so far primarily focussed on birds, but here we have found evidence that the integration of both approaches could particularly benefit bats. 相似文献
Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed. 相似文献
Bats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes – H17N10 and H18N11 – in Central and South American fruit bats. The identification of bats as possible additional reservoir for influenza A viruses raises questions about the role of this mammalian taxon in influenza A virus ecology and possible public health relevance. As molecular testing can be limited by a short time window in which the virus is present, serological testing provides information about past infections and virus spread in populations after the virus has been cleared. This study aimed at screening available sera from 100 free-ranging, frugivorous bats (Eidolon helvum) sampled in 2009/10 in Ghana, for the presence of antibodies against the complete panel of influenza A haemagglutinin (HA) types ranging from H1 to H18 by means of a protein microarray platform. This technique enables simultaneous serological testing against multiple recombinant HA-types in 5μl of serum. Preliminary results indicate serological evidence against avian influenza subtype H9 in about 30% of the animals screened, with low-level cross-reactivity to phylogenetically closely related subtypes H8 and H12. To our knowledge, this is the first report of serological evidence of influenza A viruses other than H17 and H18 in bats. As avian influenza subtype H9 is associated with human infections, the implications of our findings from a public health context remain to be investigated. 相似文献
The trophic ecology of Nyctalus lasiopterus in the Samara Bend during July 2008–2010 has been studied. It has been revealed that the main feeding stations for this species are old ecotonal black poplar stands and willow groves. N. lasiopterus keeps to opportunistic foraging by using easily accessible and properly sized food objects. Having analyzed 129 fecal samples, we singled out 10 categories of food objects belonging to six orders of insects. The representatives of Lepidoptera constitute the major part of the ration. Their abundance rates undergo asynchronous changes relative to each other. Homoptera and Neuroptera are found more rarely in the feces. Orthoptera and Diptera are extremely rare. Besides insects, bird feathers were found in 14 faecal samples of N. lasiopterus. They made up from 60 to 90% of the total fecal mass. 相似文献
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease. 相似文献
Nipah virus (NiV) is a zoonotic virus that can pose a serious threat to human and livestock health. Old-world fruit bats (Pteropus spp.) are the natural reservoir hosts for NiV, and Pteropus lylei, Lyle’s flying fox, is an important host of NiV in mainland Southeast Asia. NiV can be transmitted from bats to humans directly via bat-contaminated foods (i.e., date palm sap or fruit) or indirectly via livestock or other intermediate animal hosts. Here we construct risk maps for NiV spillover and transmission by combining ecological niche models for the P. lylei bat reservoir with other spatial data related to direct or indirect NiV transmission (livestock density, foodborne sources including fruit production, and human population). We predict the current and future (2050 and 2070) distribution of P. lylei across Thailand, Cambodia, and Vietnam. Our best-fit model predicted that central and western regions of Thailand and small areas in Cambodia are currently the most suitable habitats for P. lylei. However, due to climate change, the species range is predicted to expand to include lower northern, northeastern, eastern, and upper southern Thailand and almost all of Cambodia and lower southern Vietnam. This expansion will create additional risk areas for human infection from P. lylei in Thailand. Our combined predictive risk maps showed that central Thailand, inhabited by 2.3 million people, is considered highly suitable for the zoonotic transmission of NiV from P. lylei. These current and future NiV transmission risk maps can be used to prioritize sites for active virus surveillance and developing awareness and prevention programs to reduce the risk of NiV spillover and spread in Thailand.
Wind farms have shown a spectacular growth during the last 10 years. As far as we know, this study is the first where the
relationship between wind power and birds and small mammals have been considered. Before–after control impact (BACI) study
design to birds and Impact Gradient (IG) study design to small mammals to test the null hypothesis of no impact of a wind
farm were used. In the BACI model Windfarm Area and a Reference Area were considered. Distance from turbines was considered
in the IG model. Windfarm installations did not clearly affect bird and small mammal populations. Flight height of nesting
and no nesting birds did not show a clear tendency. Small mammals populations suffered high variations in numbers through
times by intrinsic population factors. There are many practical problems of detection of human influence on abundances of
populations so sampling in the long run can be suggested. 相似文献
Circoviruses are highly prevalent porcine and avian pathogens. In recent years, novel circular ssDNA genomes have recently been detected in a variety of fecal and environmental samples using deep sequencing approaches. In this study the identification of genomes of novel circoviruses and cycloviruses in feces of insectivorous bats is reported. Pan-reactive primers were used targeting the conserved rep region of circoviruses and cycloviruses to screen DNA bat fecal samples. Using this approach, partial rep sequences were detected which formed five phylogenetic groups distributed among the Circovirus and the recently proposed Cyclovirus genera of the Circoviridae. Further analysis using inverse PCR and Sanger sequencing led to the characterization of four new putative members of the family Circoviridae with genome size ranging from 1,608 to 1,790 nt, two inversely arranged ORFs, and canonical nonamer sequences atop a stem loop. 相似文献
The role of bats or any generalist predator in suppressing prey populations depends on the predator's ability to track and exploit available prey. Using a qPCR fecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consuming corn earworm (CEW) moths (Helicoverpa zea) and seasonal fluctuations in CEW populations. This result is consistent with earlier research linking the bats' diet to patterns of migration, abundance, and crop infestation by important insect pests. Here we confirm opportunistic feeding on one of the world's most destructive insects and support model estimates of the bats' ecosystem services. Regression analysis of CEW consumption versus the moth's abundance at four insect trapping sites further indicates that bats track local abundance of CEW within the regional landscape. Estimates of CEW gene copies in the feces of bats are not associated with seasonal or local patterns of CEW abundance, and results of captive feeding experiments indicate that our qPCR assay does not provide a direct measure of numbers or biomass of prey consumed. Our results support growing evidence for the role of generalist predators, and bats specifically, as agents for biological control and speak to the value of conserving indigenous generalist predators. 相似文献
Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift. 相似文献
Bat populations are declining in many areas, partly because up to two-thirds of their wetland habitats have been lost. One
natural agent creating wetlands is the beaver, which is recolonizing its former range. Beaver flowages are known for their
high production of aquatic invertebrates. We tested the hypothesis that the high numbers of insects emerging from beaver flowages
influences their use by foraging bats. We compared bat use and bat numbers above flowages of introduced Canadian beavers Castor canadensis and in nearby control ponds where beavers were absent. The two bat species detected, Eptesicus nilssoni and Myotis daubentoni, used beaver flowages more than non-beaver ponds. This is especially the case for Eptesicus nilssoni. Bats also seemed to forage in larger groups while above beaver ponds compared to the control ponds. Beaver flowages appeared
to improve bat habitats. A plausible reason for this could be the high number of insects emerging from beaver ponds. Favouring
the beaver in habitat management is a tool for creating suitable conditions for many other species, such as bats. In areas
not suited for the beaver, insect production can be achieved by imitating the beaver with man-made impoundments. This is especially
important in areas which have lost most of their wetlands. 相似文献
EcoHealth - Bats are the second most diverse order of mammals and key species for ecosystem functioning, providing a wide range of ecosystem services, from pest control to seed dispersal.... 相似文献
Eighty-three free-living Eurasian buzzards (Buteo buteo) from three different areas in Germany were examined for adult stages and the metacercaria of the trematode Strigea falconispalumbi. Prevalences of adult parasites in the small intestine was 36% (Berlin/Brandenburg), 28% (Lower Saxony) and 3% (Baden-Württemberg). Metacercaria in the connective tissue of the neck were found in 58%, 55%, and 10% of birds from the respective areas. Significant differences in the prevalence of S. falconispalumbi adults and metacercaria between the areas were attributed to the different abundance of freshwater which is the key habitat for two intermediate hosts. 相似文献