首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.  相似文献   

2.
Chang HC  Hsu C  Hsu HK  Yang RC 《IUBMB life》2003,55(7):403-407
We have previously shown that sphingosine increased caspase-3 activity and induced apoptosis in human hepatoma cells. Our data also suggest that other caspases may be involved in sphingosine-triggered apoptosis. In order to clarify this issue, we used different approaches to study the functional role of several initiator or executioner caspases in apoptosis induced by sphingosine. Activation of procaspases-2, -7, and -8, was clearly demonstrated during sphingosine-triggered apoptosis. Pretreatment with chemical inhibitors for caspase-7 and -8, attenuated apoptotic cell death induced by sphingosine. Conversely, pretreatment with specific caspase-2 inhibitor Z-VDVAD-FMK did not show any protective effect. In addition, enforced expression of constitutively activated AKT kinase which is known to inhibit apoptosis induced by sphingosine, potently suppressed activation of procaspases-7 and -8. In summary, these data suggest that in addition to caspases-3, caspase-7 and -8 are involved in the apoptosis induced by sphingosine.  相似文献   

3.
Caspase-8 is believed to play an obligatory role in apoptosis initiation by death receptors, but the role of its structural relative, caspase-10, remains controversial. Although earlier evidence implicated caspase-10 in apoptosis signaling by CD95L and Apo2L/TRAIL, recent studies indicated that these death receptor ligands recruit caspase-8 but not caspase-10 to their death-inducing signaling complex (DISC) even in presence of abundant caspase-10. We characterized a series of caspase-10-specific antibodies and found that certain commercially available antibodies cross-react with HSP60, shedding new light on previous results. The majority of 55 lung and breast carcinoma cell lines expressed mRNA for both caspase-8 and -10; however, immunoblot analysis revealed that caspase-10 protein expression was more frequently absent than that of caspase-8, suggesting a possible selective pressure against caspase-10 production in cancer cells. In nontransfected cells expressing both caspases, CD95L and Apo2L/TRAIL recruited endogenous caspase-10 as well as caspase-8 to their DISC, where both enzymes were proteolytically processed with similar kinetics. Caspase-10 recruitment required the adaptor FADD/Mort1, and caspase-10 cleavage in vitro required DISC assembly, consistent with the processing of an apoptosis initiator. Cells expressing only one of the caspases underwent ligand-induced apoptosis, indicating that each caspase can initiate apoptosis independently of the other. Thus, apoptosis signaling by death receptors involves not only caspase-8 but also caspase-10, and both caspases may have equally important roles in apoptosis initiation.  相似文献   

4.
Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.Caspases are a family of genes important for maintaining homeostasis through regulating cell death and inflammation. Here we will attempt to summarize what we currently know about how caspases normally work, and what happens when members of this diverse gene family fail to work correctly.Caspases are endoproteases that hydrolyze peptide bonds in a reaction that depends on catalytic cysteine residues in the caspase active site and occurs only after certain aspartic acid residues in the substrate. Although caspase-mediated processing can result in substrate inactivation, it may also generate active signaling molecules that participate in ordered processes such as apoptosis and inflammation. Accordingly, caspases have been broadly classified by their known roles in apoptosis (caspase-3, -6, -7, -8, and -9 in mammals), and in inflammation (caspase-1, -4, -5, -12 in humans and caspase-1, -11, and -12 in mice) (Fig. 1). The functions of caspase-2, -10, and -14 are less easily categorized. Caspases involved in apoptosis have been subclassified by their mechanism of action and are either initiator caspases (caspase-8 and -9) or executioner caspases (caspase-3, -6, and -7).Figure 1.Domain structure of human caspases.Caspases are initially produced as inactive monomeric procaspases that require dimerization and often cleavage for activation. Assembly into dimers is facilitated by various adapter proteins that bind to specific regions in the prodomain of the procaspase. The exact mechanism of assembly depends on the specific adapter involved. Different caspases have different protein–protein interaction domains in their prodomains, allowing them to complex with different adapters. For example, caspase-1, -2, -4, -5, and -9 contain a caspase recruitment domain (CARD), whereas caspase-8 and -10 have a death effector domain (DED) (Taylor et al. 2008).  相似文献   

5.
Shiga toxin 1 (Stx1) produced by Escherichia coli has been reported to induce apoptosis in many different cell types, including Burkitt's lymphoma (BL) cells. Since it has been established that the caspases play essential roles as the effector molecules in the apoptotic process in most cases, we examined the kinetics of caspase activation during the process of Stx1-mediated apoptosis of BL cells. Using Ramos BL cells that are highly sensitive to Stx1-mediated cytotoxicity, we observed that multiple caspases, including caspase-3, -7, and -8 were promptly activated following Stx1 treatment, as indicated by both the procaspase cleavages and enhancement of cleavage of the tetrapeptide substrates of the caspases. In addition, the inhibition assay revealed that caspase-8 is located upstream of both caspase-3 and -7, suggesting that Stx1-mediated apoptosis utilizes a similar caspase cascade to that involved in Fas-mediated apoptosis. Neither anti-Fas mAb nor TNF-alpha, however, affected the Stx1-mediated apoptosis of Ramos cells. Although the precise mechanism of Stx1-mediated activation of caspase-8 is still unclear, we have demonstrated that crosslinkage of CD77, a functional receptor for Stx1, with specific antibody is sufficient to induce activation of caspase-8. Our findings should provide new insight into the understanding of the molecular basis of Stx1-mediated cell injury.  相似文献   

6.
Death signaling provided by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS) are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC), a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI)+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1), and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.  相似文献   

7.
ASK1 activates JNK and p38 mitogen-activated protein kinases and constitutes a pivotal signaling pathway in cytokine- and stress-induced apoptosis. However, little is known about the mechanism of how ASK1 executes apoptosis. Here we investigated the roles of caspases and mitochondria in ASK1-induced apoptosis. We found that benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), a broad-spectrum caspase inhibitor, mostly inhibited ASK1-induced cell death, suggesting that caspases are required for ASK1-induced apoptosis. Overexpression of ASK1DeltaN, a constitutively active mutant of ASK1, induced cytochrome c release from mitochondria and activation of caspase-9 and caspase-3 but not of caspase-8-like proteases. Consistently, caspase-8-deficient (Casp8 (-/-)) cells were sensitive to ASK1-induced caspase-3 activation and apoptosis, suggesting that caspase-8 is dispensable for ASK1-induced apoptosis, whereas ASK1 failed to activate caspase-3 in caspase-9-dificient (Casp9 (-/-)) cells. Moreover, mitochondrial cytochrome c release, which was not inhibited by zVAD-fmk, preceded the onset of caspase-3 activation and cell death induced by ASK1. ASK1 thus appears to execute apoptosis mainly by the mitochondria-dependent caspase activation.  相似文献   

8.
Caspase activation and apoptotic volume decrease are fundamental features of programmed cell death; however, the relationship between these components is not well understood. Here we provide biochemical and genetic evidence for the differential involvement of initiator caspases in the apoptotic volume decrease during both intrinsic and extrinsic activation of apoptosis. Apoptosis induction in Jurkat T lymphocytes by Fas receptor engagement (intrinsic) or ultraviolet (UV)-C radiation (extrinsic) triggered the loss of cell volume, which was restricted to cells with diminished intracellular K(+) ions. These characteristics kinetically coincided with the proteolytic processing and activation of both initiator and effector caspases. Although the polycaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone completely inhibited the Fas-mediated apoptotic volume decrease and K(+) efflux, it was much less effective in preventing these processes during UV-induced cell death under conditions whereby caspase activities and DNA degradation were blocked. To define the roles of specific initiator caspases, we utilized Jurkat cells genetically deficient in caspase-8 or stably transfected with a dominant-negative mutant of caspase-9. The results show that the activation of caspase-8, but not caspase-9, is necessary for Fas-induced apoptosis. Conversely, caspase-9, but not caspase-8, is important for UV-mediated shrunken morphology and apoptosis progression. Together, these findings indicate that cell shrinkage and K(+) efflux during apoptosis are tightly coupled, but are differentially regulated by either caspase-8 or caspase-9 depending on specific pathways of cell death.  相似文献   

9.
Caspases have been implicated in the induction of apoptosis in most systems studied. The importance of caspases for apoptosis was further investigated using the system of didemnin B-induced apoptosis. We found that benzyloxycarbonyl-VAD-fluoromethylketone, a general caspase inhibitor, inhibits didemnin B-induced apoptosis in HL-60 and Daudi cells. Acetyl-YVAD-chloromethylketone, a caspase-1-like activity inhibitor, inhibits didemnin B-induced apoptosis in Daudi cells, whereas the caspase-3-like activity inhibitor, acetyl-DEVD-aldehyde, has no effect. Using immunoblots to investigate cleavage of caspases-1 and -3, we found that both caspases are activated in both cell lines. We showed that the caspase substrate poly(ADP-ribose)polymerase is cleaved in these cells after didemnin B treatment. In both cell lines, poly(ADP-ribose)polymerase cleavage is inhibited by benzyloxycarbonyl-VAD-fluoromethylketone and also by acetyl-YVAD-chloromethylketone in Daudi cells. These results indicate that a caspase(s) other than caspase-3 is required for didemnin B-induced apoptosis. We show that caspases may be activated during apoptosis that are not required for the progression of apoptosis.  相似文献   

10.
TRAIL is a member of the TNF super family and has been shown to induce apoptosis in many cancer cell lines but not in normal cells. Breast cancers can be divided into different subgroups on the basis of the expression of estrogen and progesterone receptors, HER-2 amplification, or the lack of these three markers (known as triple-negative or basal-type breast cancer). Our group and others have shown previously that triple-negative breast cancer cell lines are sensitive to TRAIL whereas others are relatively resistant. In an earlier study, we reported that inhibition of WEE1, a cell-cycle checkpoint regulator, causes increased cell death in breast cancer cell lines. In this study, we tested the effects of WEE1 inhibition on TRAIL-mediated apoptosis in breast cancer cell lines. Pretreatment with WEE1 inhibitor or knockdown of WEE1 increased the toxicity of TRAIL in the basal/triple-negative breast cancer cell lines compared with WEE1 inhibitor or TRAIL treatment alone. The enhanced cell death is attributed to increased surface expression of death receptors, increased caspase activation which could be blocked by the pan-caspase inhibitor, Z-VAD-FMK, thereby rescuing cells from caspase-mediated apoptosis. The cell death was initiated primarily by caspase-8 because knockdown of caspase-8 and not of any other initiator caspases (i.e., caspase-2, -9, or -10) rescued cells from WEE1 inhibitor-sensitized TRAIL-induced cell death. Taken together, the data suggest that the combination of WEE1 inhibitor and TRAIL could provide a novel combination for the treatment of basal/triple-negative breast cancer.  相似文献   

11.
Although caspases have been demonstrated to be involved in artemisinin (ARTE)-induced apoptosis, their exact functions are not well understood. The aim of this report is to explore the roles of caspase-8, -9 and -3 during ARTE-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. ARTE treatment induces a rapid generation of reactive oxygen species (ROS), and ROS-dependent apoptosis as well as the activation of caspase-8, -9 and -3 via time- and dose-dependent fashion. Of upmost importance, inhibition of caspase-8 or -9, but not caspase-3, almost completely blocks the ARTE-induced not only activation of the caspase-8, -9 and -3 but also apoptosis. In addition, the apoptotic process triggered by ARTE does not involve the Bid cleavage, tBid translocation, significant loss of mitochondrial membrane potential and cytochrome c release from mitochondria. Moreover, silencing Bax/Bak does not prevent the ATRE-induced cell death as well as the activation of caspase-8, -9 and -3. Collectively, our data firstly demonstrate that ARTE triggers a ROS-mediated positive feedback amplification activation loop between caspase-8 and -9 independent of mitochondria, which dominantly mediated the ARTE-induced apoptosis via a caspase-3-independent apoptotic pathway in ASTC-a-1 cells. Our findings imply a potential to develop new derivatives from artemisinin to effectively initiate the amplification activation loop of caspases.  相似文献   

12.
Resistance toward cytotoxic drugs is one of the primary causes for therapeutic failure in cancer therapy. DNA repair mechanisms as well as deficient caspases activation play a critical role in apoptosis resistance of tumor cells toward anticancer drug treatment. Here, we discovered that deficient caspases activation in apoptosis-resistant cancer cells depends on DNA-ligase IV and DNA-protein kinase (DNA-PK), playing crucial roles in the nonhomologous end joining (NHEJ) pathway, which is the predominant pathway for DNA double-strand break repair (DNA-DSB-repair) in mammalian cells. DNA-PK(+/+) as well as DNA-ligase IV (+/+) cancer cells were apoptosis resistant and deficient in activation of caspase-3, caspase-9, and caspase-8 and in cleavage of poly(ADP-ribose) polymerase after doxorubicin treatment. Inhibition of NHEJ by knocking out DNA-PK or DNA-ligase IV restored caspases activation and apoptosis sensitivity after doxorubicin treatment. In addition, inhibition of caspases activation prevented doxorubicin-induced apoptosis but could not prevent doxorubicin-induced DNA damage, indicating that induction of DNA damage is independent of caspases activation. However, caspases activation depends on induction of DNA damage left unrepaired by NHEJ-DNA-DSB-repair. We conclude that DNA damage left unrepaired by DNA-ligase IV or DNA-PK might be the initiator for caspases activation by doxorubicin in cancer cells. Failure in caspases activation using doxorubicin depends on loss of DNA damage and is due to higher rates of NHEJ-DNA-DBS-repair.  相似文献   

13.
Activation of initiator and effector caspases, mitochondrial changes involving a reduction in its membrane potential and release of cytochrome c (cyt c) into the cytosol, are characteristic features of apoptosis. These changes are associated with cell acidification in some models of apoptosis. The hierarchical relationship between these events has, however, not been deciphered. We have shown that somatostatin (SST), acting via the Src homology 2 bearing tyrosine phosphatase SHP-1, exerts cytotoxic action in MCF-7 cells, and triggers cell acidification and apoptosis. We investigated the temporal sequence of apoptotic events linking caspase activation, acidification, and mitochondrial dysfunction in this system and report here that (i) SHP-1-mediated caspase-8 activation is required for SST-induced decrease in pH(i). (ii) Effector caspases are induced only when there is concomitant acidification. (iii) Decrease in pH(i) is necessary to induce reduction in mitochondrial membrane potential, cyt c release and caspase-9 activation and (iv) depletion of ATP ablates SST-induced cyt c release and caspase-9 activation, but not its ability to induce effector caspases and apoptosis. These data reveal that SHP-1-/caspase-8-mediated acidification occurs at a site other than the mitochondrion and that SST-induced apoptosis is not dependent on disruption of mitochondrial function and caspase-9 activation.  相似文献   

14.
Initiator caspases in apoptosis signaling pathways   总被引:15,自引:0,他引:15  
Death receptor- or mitochondrion-dependent apoptosis is initiated by the recruitment and activation of apical caspases in the apoptosis signaling pathways. In death receptor-mediated apoptosis, engagement of death receptors leads to the formation of the death-inducing signaling complex (DISC) containing the death receptors, adaptor proteins, caspase-8 and caspase-10. In mitochondrion-dependent apoptosis, release of cytochrome C into the cytosol results in the formation of apoptosome containing cytochrome C, Apaf-1 and caspase-9. Caspase-8, caspase-10 and caspase-9 are believed to be the initiator caspases at the top of the caspase signaling cascade. Recruitment of caspases to DISC and apoptosome leads to their activation by dimer formation. Recent biochemical and structural analyses of components in the DISC and apoptosome shed new lights on their roles in inducing the onset of apoptosis signaling.  相似文献   

15.
By using green fluorescent protein fusion, we investigated the subcellular localization of all the caspases that have been cloned from humans and implicated in the execution of apoptosis. We divided these caspases into three groups according to subcellular localization. The first group includes caspase-1, -3, -6, -7, and -9, which are expressed mainly in the cytoplasm with various levels of nuclear localization depending on the cell type. The second group has a single member, caspase-2, which is primarily localized in the nucleus. The nuclear localization was demonstrated to be mediated by a nuclear localization signal near the NH(2)-terminus of the prodomain. The third group includes caspase-8 and -10, which have a cytoplasmic distribution. These two members have potent, rapid cell death-inducing activity and are prone to make aggregates when overexpressed. Their prodomains formed marked fibrous structures in the cytoplasm whose localization seemed distinct from organelles or cytoskeletons. None of the GFP-caspases examined in this study showed a predominant mitochondrial localization as has been reported for some caspases.  相似文献   

16.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

17.
Inhibitor of apoptosis (IAP) gene products play an evolutionarily conserved role in regulating programmed cell death in diverse species ranging from insects to humans. Human XIAP, cIAP1 and cIAP2 are direct inhibitors of at least two members of the caspase family of cell death proteases: caspase-3 and caspase-7. Here we compared the mechanism by which IAPs interfere with activation of caspase-3 and other effector caspases in cytosolic extracts where caspase activation was initiated by caspase-8, a proximal protease activated by ligation of TNF-family receptors, or by cytochrome c, which is released from mitochondria into the cytosol during apoptosis. These studies demonstrate that XIAP, cIAP1 and cIAP2 can prevent the proteolytic processing of pro-caspases -3, -6 and -7 by blocking the cytochrome c-induced activation of pro-caspase-9. In contrast, these IAP family proteins did not prevent caspase-8-induced proteolytic activation of pro-caspase-3; however, they subsequently inhibited active caspase-3 directly, thus blocking downstream apoptotic events such as further activation of caspases. These findings demonstrate that IAPs can suppress different apoptotic pathways by inhibiting distinct caspases and identify pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.  相似文献   

18.
The cytokine hepatocyte growth factor/scatter factor (HGF/SF) has been found to protect a variety of epithelial and cancer cell types against cytotoxicity and apoptosis induced by DNA damage, but the specific apoptotic signaling events and the levels at which they are blocked by HGF/SF have not been identified. We found that treatment of MDA-MB-453 human breast cancer cells with adriamycin (also known as doxorubicin, a DNA topoisomerase IIalpha inhibitor) induced a series of time-dependent events, including the mitochondrial release of cytochrome c and apoptosis-inducing factor, mitochondrial membrane depolarization, activation of a set of caspases (caspase-9, -3, -7, -2, and -8), cleavage of poly(ADP-ribose) polymerase (PARP), and up-regulation of expression of the Fas ligand. All of these events were blocked by preincubation of the cells with HGF/SF. In contrast, the pan-caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone blocked some of these events (e.g. caspase-3 activation and PARP cleavage) but did not block cytochrome c release or mitochondrial depolarization. These findings suggest that HGF/SF functions, in part, upstream of the mitochondria to block mitochondrial apoptosis signaling, prevent activation of multiple caspases, and protect breast cancer cells against apoptosis.  相似文献   

19.
The caspases are an evolutionarily conserved family of cysteine proteases, with essential roles in apoptosis or inflammation. Caspase-2 was the second caspase to be cloned and it resembles the prototypical nematode caspase CED-3 more closely than any other mammalian protein. An absence of caspase-2-specific reagents and the subtle phenotype of caspase-2-deficient mice have hampered definition of the physiological role of caspase-2 and identification of factors regulating its activity. Although some data implicate caspase-2 in apoptotic pathways, a link with apoptosis has been less firmly established for caspase-2 than for some other caspases. Emerging evidence suggests that caspase-2 regulates the cell cycle and may act as a tumour suppressor. This article critically reviews the current state of knowledge regarding the biochemistry and biology of this controversial caspase.  相似文献   

20.
Apoptosis is driven by positive feedback activation between aspartate-specific cysteinyl proteases (caspases). These feedback loops ensure the swift and efficient elimination of cells upon initiation of apoptosis execution. At the same time, the signaling network must be insensitive to erroneous, mild caspase activation to avoid unwanted, excessive cell death. Sublethal caspase activation in fact was shown to be a requirement for the differentiation of multiple cell types but might also occur accidentally during short, transient cellular stress conditions. Here we carried out an in silico comparison of the molecular mechanisms that so far have been identified to impair the amplification of caspase activities via the caspase-8, -3, -6 loop. In a systems model resembling HeLa cervical cancer cells, the dimerization/dissociation balance of caspase-8 potently suppressed the amplification of caspase responses, surprisingly outperforming or matching known caspase-8 and -3 inhibitors such as bifunctional apoptosis repressor or x-linked inhibitor of apoptosis protein. These findings were further substantiated in global sensitivity analyses based on combinations of protein concentrations from the sub- to superphysiological range to screen the full spectrum of biological variability that can be expected within cell populations and between distinct cell types. Additional modeling showed that the combined effects of x-linked inhibitor of apoptosis protein and caspase-8 dimerization/dissociation processes can also provide resistance to larger inputs of active caspases. Our study therefore highlights a central and so far underappreciated role of caspase-8 dimerization/dissociation in avoiding unwanted cell death by lethal amplification of caspase responses via the caspase-8, -3, -6 loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号