首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thirty novel triaryl compounds were designed and synthesized based on the known proteasome inhibitor PI-1840. Most of them showed significant inhibition against the β5c subunit of human 20S proteasome, and five of them exhibited IC50 values at the sub-micromolar level, which were comparable to or even more potent than PI-1840. The most active two (1c and 1d) showed IC50 values of 0.12 and 0.18 μM against the β5c subunit, respectively, while they displayed no obvious inhibition against the β2c, β1c and β5i subunits. Molecular docking provided informative clues for the subunit selectivity. The potent and subunit selective proteasome inhibitors identified herein represent new chemical templates for further molecular optimization.  相似文献   

2.
A series of structurally novel proteasome inhibitors 112 have been developed based rational topology-based scaffold hopping of bortezomib. Among these novel proteasome inhibitors, compound 10 represents an important advance due to the comparable proteasome-inhibitory activity (IC50?=?9.7?nM) to bortezomib (IC50?=?8.3?nM), the remarkably higher BEI and SEI values and the effectiveness in metabolic stability. Therefore, compound 10 provides an excellent lead suitable for further optimization.  相似文献   

3.
To establish a transient transfection system in a Naegleria, we constructed three nfa1-pEGFP-N1 vectors by the promoter replacement and insertion of a nfa1 gene and transfected the DNAs into Naegleria gruberi using a lipid reagent. The transfection efficiency and usefulness of the three modified vectors were estimated by identifying the expressions of the EGFP and Nfa1 protein from N. gruberi. After transfection, the Nfa1 protein was functionally expressed on pseudopodia of N. gruberi. The strong GFP fluorescence was observed in N. gruberi transfected with the actin-nfa1-pEGFP-N1 vector, of which the CMV promoter region in the expression vector was replaced with the actin 5' UTR region. Additionally, when transgenic N. gruberi trophozoites were co-cultured with CHO target cells, the Nfa1 protein was also located on cytoplasm and pseudopodia, especially on a food cup that was formed in contact with target cells as it shown in pathogenic N. fowleri.  相似文献   

4.
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation.  相似文献   

5.
6.
Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis (PAM). Proteases have been suggested to be involved in tissue invasion and destruction during infection. We analyzed and compared the complete protease profiles of total crude extract and conditioned medium of both pathogenic N. fowleri and non-pathogenic Naegleria gruberi trophozoites. Using SDS-PAGE, we found differences in the number and molecular weight of proteolytic bands between the two strains. The proteases showed optimal activity at pH 7.0 and 35 degrees C for both strains. Inhibition assays showed that the main proteolytic activity in both strains is due to cysteine proteases although serine proteases were also detected. Both N. fowleri and N. gruberi have a variety of different protease activities at different pH levels and temperatures. These proteases may allow the amoebae to acquire nutrients from different sources, including those from the host. Although, the role of the amoebic proteases in the pathogenesis of PAM is not clearly defined, it seems that proteases and other molecules of the parasite as well as those from the host, could be participating in the damage to the human central nervous system.  相似文献   

7.
Immunoproteasomes and standard proteasomes assemble by alternative pathways that bias against the formation of certain "mixed" proteasomes. Differences between beta subunit propeptides contribute to assembly specificity and an assembly chaperone, proteassemblin, may be involved via differential propeptide interactions. We investigated possible mechanisms of biased proteasome assembly and the role of proteassemblin by identifying protein-protein interactions among human 20S proteasome subunits and proteassemblin using a yeast two-hybrid interaction assay. Forty-one interactions were detected, including five involving proteassemblin and contiguous beta subunits, which suggests that proteassemblin binds to preproteasomes via a beta subunit surface. Interaction between proteassemblin and beta5, but not beta5i, suggests that proteassemblin may be involved in the propeptide-dependent differential incorporation of these subunits. Interactions between proteassemblin and beta1, beta1i, and beta7 suggest that proteassemblin may regulate preproteasome dimerization via interactions with the C-termini of these subunits, which in the mature 20S structure extend to contact opposing beta subunit rings.  相似文献   

8.
The ubiquitin proteasome pathway is crucial in regulating many processes in the cell. Modulation of proteasome activities has emerged as a powerful strategy for potential therapies against much important pathologies. In particular, specific inhibitors may represent a useful tool for the treatment of tumors. Here, we report studies of a new series of peptide-based analogues bearing a naphthoquinone pharmacophoric unit at the C-terminal position. Some derivatives showed inhibition in the µM range of the post-acidic-like and chymotrypsin-like active sites of the proteasome.  相似文献   

9.
In this paper we demonstrate that the Candida albicans 20S proteasome is in vivo phosphorylated and is a good in vitro substrate (S(0.5) 14nM) of homologous protein kinase CK2 (CK2). We identify alpha6/C2, alpha3/C9, and alpha5/Pup2 proteasome subunits as the main in vivo phosphorylated and in vitro CK2-phosphorylatable proteasome components. In vitro phosphorylation by homologous CK2 holoenzyme occurs only in the presence of polylysine, a characteristic that distinguishes the yeast proteasomes from mammalian proteasomes which are phosphorylated by CK2 in the absence of polycations. The major in vivo phosphate acceptor is the alpha3/C9 subunit, being phosphorylated in serine, both in vivo and in vitro. The phosphopeptides generated by endoproteinase Glu-C digestion from in vivo labeled alpha3/C9 subunit, from in vitro phosphorylation by homologous CK2 holoenzyme, and from the recombinant alpha3/C9 subunit phosphorylated by recombinant human CK2-alpha subunit are identical, suggesting that CK2 is likely responsible for in vivo phosphorylation of this subunit. Direct mutational analysis shows that serine 248 is the residue of the alpha3/C9 subunit phosphorylated by CK2. The in vitro stoichiometry of phosphorylation of the alpha6/C2 and alpha3/C9 proteasome subunits by CK2 can be estimated as 0.7-0.8 and 0.4-0.5 mol of phosphate per mole of subunit, respectively. These results are consistent with the relative abundance of the unphosphorylated and phosphorylated isoforms of these subunits present in the purified 20S proteasome preparation. Our demonstration of phosphorylation of C. albicans proteasome suggests that phosphorylation might be a general mechanism of regulation of proteasome activity.  相似文献   

10.
The 20S proteasome from yeast cells of Candida albicans was purified by successive chromatographic steps to apparent homogeneity, as judged by nondenaturing and denaturing polyacrylamide gel electrophoresis. Its molecular mass was estimated to be 640 kDa by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave at least 10 bands in the range 20-32 kDa. Two-dimensional electrophoresis revealed the presence of at least 14 polypeptides. By electron microscopy after negative staining, the proteasome preparation appeared as typical symmetrical barrel-shaped particles. The enzyme cleaved the peptidyl-arylamide bonds in the model synthetic substrates Cbz-G-G-L-p-nitroanilide, Cbz-G-G-R-beta-naphthylamide, and Cbz-L-L-E-beta-naphthylamide (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide-hydrolyzing activities). The differential sensitivity of these activities to aldehyde peptides and sodium dodecyl sulfate supported the multicatalytic nature of this enzyme. Three proteasomal subunits were identified as alpha6/Pre5, alpha3/Y13, and alpha5/Pup2 by internal sequencing of tryptic fragments. Their sequences perfectly matched the corresponding deduced amino acid sequences of the C. albicans genes. A fourth subunit was identified as alpha7/Prs1 by immunorecognition with a monoclonal antibody specific for C8, the human proteasome subunit homologue. Treatment of the intact isolated 20S proteasome with acid phosphatase and Western blot analysis of the separated components indicated that the alpha7/Prs1 subunit is obtained as a multiply phosphorylated protein.  相似文献   

11.
Three different monoclonal antibodies were produced against Trypanosona cruzi proteasomes. These antibodies were shown to react with a single 27-kDa band on immunoblots of purified proteasomes. Using a 7E5 monoclonal antibody (IgG1) that recognized the α5 subunit of protozoan protease we have studied the intracellular distribution of the T. cruzi 20S proteasome. Contrary to all cell types described to date, T. cruzi 20S proteasome was found not only in the cytoplasm and nucleus but also in the kinetoplast. As revealed by confocal microscopy, the reactivity of monoclonal antibody 7E5 was highly specific for protozoan proteasome because the antibody recognized only the proteasomes from parasites and not those from the mammalian host in T. cruzi infected cells. These findings were confirmed by immunoblots or immunoprecipitations, followed by chymotrypsin-like activity detection in kinetoplasts isolated by differential centrifugation and sucrose density gradients. Proteasome 20S was present in all T. cruzi stages and only slight differences in terms of relative abundance were found. The potential role of the proteasome in kinetoplast remodeling remains to be determined.  相似文献   

12.
13.
Cellular protein homeostasis results from the combination of protein biogenesis processes and protein quality control mechanisms, which contribute to the functional state of cells under normal and stress conditions. Proteolysis constitutes the final step by which short-lived, misfolded and damaged intracellular proteins are eliminated. Protein turnover and oxidatively modified protein degradation are mainly achieved by the proteasome in the cytosol and nucleus of eukaryotic cells while several ATP-dependent proteases including the matrix protease Lon take part in the mitochondrial protein degradation. Moreover, Lon protease seems to play a major role in the elimination of oxidatively modified proteins in the mitochondrial matrix. Specific inhibitors are commonly used to assess cellular functions of proteolytic systems as well as to identify their protein substrates. Here, we present and discuss known proteasome and Lon protease inhibitors. To date, very few inhibitors of Lon have been described and no specific inhibitors of this protease are available. The current knowledge on both catalytic mechanisms and inhibitors of these two proteases is first described and attempts to define specific non-peptidic inhibitors of the human Lon protease are presented.  相似文献   

14.
The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.  相似文献   

15.
Sassa H  Oguchi S  Inoue T  Hirano H 《Gene》2000,250(1-2):61-66
The 20S proteasome is the proteolytic complex that is involved in removing abnormal proteins, and it also has other diverse biological functions. Its structure comprises 28 subunits arranged in four rings of seven subunits, and exists as a hollow cylinder. The two outer rings and two inner rings form an 7β7β77 structure, and each subunit, and β, exists as seven different types, thus giving 14 kinds of subunits. In this study, we report the primary structures of the 14 proteasomal subunit subfamilies in rice (Oryza sativa), representing the first set for all of the subunits from monocots. Amino acid sequence homology within the rice family (-type: 28.9–42.1%; β-type: 17.2–31.9%) were lower than those between rice subunits and corresponding orthologs from Arabidopsis and yeast (-type: 49.2–94.5%; β-type: 34.8–87.7%). Structural features observed in eukaryotic proteasome subunits, i.e., - or β-type signature at the N-termini, Thr active sites in β1, β2 and β5 subunits, and nuclear localization signal-like sequences in some -type subunits, were shown to be conserved in rice.  相似文献   

16.
Altered proteasome function and subunit composition in aged muscle   总被引:5,自引:0,他引:5  
Myofibrillar protein degradation is mediated through the ubiquitin-proteasome pathway. To investigate if altered proteasome activity plays a role in age-related muscle atrophy, we examined muscle size and proteasome function in young and aged F344BN rats. Significant age-related muscle atrophy was confirmed by the 38% decrease in cross-sectional area of type 1 fibers in soleus muscle. Determination of proteasome function showed hydrolysis of fluorogenic peptides was equivalent between ages. However, when accounting for the 3-fold increase in content of the 20S catalytic core in aged muscle, the lower specific activity suggests a functional loss in individual proteins with aging. Comparing the composition of the catalytic beta-subunits showed an age-related 4-fold increase in the cytokine-inducible subunits, LMP2 and LMP7. Additionally, the content of the activating complexes, PA28 and PA700, relative to the 20S proteasome was reduced 50%. These results suggest significant alterations in the intrinsic activity, the percentage of immunoproteasome, and the regulation of the 20S proteasome by PA28 and PA700 in aged muscle.  相似文献   

17.
Human infection with the protozoan Trypanosoma cruzi leads to Chagas disease. After 10-20 years of the normal acute phase, this disease develops to a chronic phase characterized mainly by dilated congestive cardiomyopathy. The mechanisms involved in the chronic phase are poorly understood, and it has been suggested that the parasite evades immune surveillance by down regulating the MHC class I antigen processing pathway. Here we analyzed whether composition or expression of the 20S proteasome, the major proteinase responsible for the generation of MHC class I ligands, were altered upon infection of HeLa cells by T. cruzi. Two-dimensional gel electrophoresis and RT-PCR experiments comparing non-infected and infected cells did not show differences between the composition of 20S proteasome or expression of its subunits. However, the proteasome’s trypsin- and chymotrypsin-like activities were 2.5 and 3.6 times higher in infected cells than in non-infected cells. Our results suggest that in vitroT. cruzi infection of human or rat cells do not alter the expression of 20S proteasomal subunits or particle composition, and fails to induce the formation of immunoproteasome. However, a significant increase in the trypsin- and chymotrypsin-like activities of the host proteasome was observed.  相似文献   

18.
The proteasome is responsible for most intracellular protein degradation and is essential for cell survival. Previous research has shown that the proteasome can be inhibited by a number of oxidants, including 4-hydroxynonenal (HNE). The present study demonstrates that HNE rapidly inhibits the chymotrypsin-like activity of the 20S proteasome purified from liver. Subunits containing HNE-adducts were identified following 2D gel electrophoresis, Western immunoblotting, and analysis by MALDI-TOF MS. At a time when only the chymotrypsin-like activity was inhibited, the alpha 6/C2 subunit was uniquely modified. These results provide important molecular details regarding the catalytic site-specific inhibition of proteasome by HNE.  相似文献   

19.
Proteasome-mediated degradation of proteins is a vital cellular process and is performed by the ubiquitin-dependent proteasome system (UPS) and the ubiquitin-independent proteasome system (UIPS). While both systems are necessary to maintain healthy cell function, many disease states are characterized by reduced activity of the UPS, and the UIPS cannot by itself maintain proper protein levels. It has been suggested that the 20S core particle (20S CP), the isoform of the proteasome in the UIPS that can degrade proteins without a ubiquitin tag, can be stimulated with a small molecule to assist the 20S CP to accept and hydrolyze substrates more rapidly. Several small molecule stimulators of the 20S CP have since been discovered, including AM-404, an arachidonic acid derivative. AM-404 has previously been shown to inhibit fatty acid amide hydrolase activity. We wished to evaluate what structural components of AM-404 are required to stimulate the 20S CP with the long-term goal of using this information to design a stimulator with better drug-like qualities. We synthesized numerous derivatives of AM-404, varying the chain length, substitutions, and degree of unsaturation. Through this endeavor, we obtained several molecules capable of stimulating the 20S CP to various degrees. We discovered that though chain length is important, the presence of a cis-alkene in a specific location in the aliphatic chain has the greatest impact on the ability to stimulate the 20S CP. Two of the derivatives maintain modest stimulatory activity, and have improved toxicity over AM-404.  相似文献   

20.
The proteasome represents a major intracellular proteolytic system responsible for the degradation of oxidized and ubiquitinated proteins in both the nucleus and cytoplasm. We have previously reported that proteasome undergoes modification by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and exhibits declines in peptidase activities during cardiac ischemia/reperfusion. This study was undertaken to characterize the effects of HNE on the structure and function of the 20S proteasome. To assess potential tissue-specific differences in the response to HNE, we utilized purified 20S proteasome from heart and liver, tissues that express different proteasome subtypes. Following incubation of heart and liver 20S proteasome with HNE, changes in the 2D gel electrophoresis patterns and peptidase activities of the proteasome were evaluated. Proteasome subunits were identified by mass spectrometry prior to and following treatment with HNE. Our results demonstrate that specific subunits of the 20S proteasome are targeted for modification by HNE and that modified proteasome exhibits selective alterations in peptidase activities. The results provide evidence for a likely mechanism of proteasome inactivation in response to oxidative stress particularly during cardiac ischemia/reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号