首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycogen synthase kinase-3β (GSK-3β) is involved in a wide variety of cellular processes, and implicated in a growing list of human diseases. Recent drug inhibition studies have suggested a role for GSK-3β in mitosis in animals. Here, we take an alternative approach to understanding GSK-3β function in mitosis by genetic mutational analysis in Drosophila. GSK-3β function is well conserved between Drosophila (Zw3) and humans, frequently operating similarly in pathways, as diverse as the Wnt signaling and circadian rhythm pathways, and sharing a key role in the development of the neuromuscular junction. Unlike drug inhibitor studies, we find that loss of function mutations of zw3 result in markedly curved, or bent, metaphase spindles that exhibit metaphase delay. These defects do not routinely result in mitotic catastrophe, and argue that Zw3 plays a role in the maintenance of the mitotic spindle, rather than an essential role in spindle morphogenesis. Consistent with a mitotic function, we observe a complex and dynamic localization of Zw3 during cell division. These studies provide genetic data that validate and extend drug inhibition studies on a novel mitotic role for glycogen synthase kinase in the maintenance of the mitotic spindle.  相似文献   

2.
Glycogen synthase kinase-3β (GSK-3β) is an evolutionarily conserved serine/threonine kinase, functioning in numerous cellular processes including cell proliferation, DNA repair, cell cycle, signaling and metabolic pathways. GSK-3β is implicated in different diseases including inflammation, neurodegenerative disease, diabetes and cancers. GSK-3β is involved in biological processes of tumorigenesis, therefore, it is rational that GSK-3β inhibitors were employed to target malignant tumors. The effects of GSK-3β inhibitors in combination of radiation and chemotherapeutic drugs have been reported in various types of cancers, suggesting GSK-3β would play important roles in cancer treatments. GSK-3β is involved in multiple signal pathway including Wnt/β-catenin, PI3K/PTEN/AKT and Notch. GSK-3β also functions in DNA repair through phosphorylation of DNA repair factors and affecting their binding to chromatin. This review focuses on the molecular mechanism of GSK-3β in DNA repair, special in base excision repair and double-strands break repair, the roles of GSK-3β in inhibition of apoptosis through activation of NF-κB, and the effects of GSK-3β inhibitors on radio- and chemosensitization of various types of cancers.This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.  相似文献   

3.
Xu CM  Wang J  Wu P  Xue YX  Zhu WL  Li QQ  Zhai HF  Shi J  Lu L 《Journal of neurochemistry》2011,118(1):126-139
As a ubiquitous serine/threonine protein kinase, glycogen synthase kinase 3β (GSK-3β) has been considered to be important in the synaptic plasticity that underlies dopamine-related behaviors and diseases. We recently found that GSK-3β activity in the nucleus accumbens (NAc) core is critically involved in cocaine-induced behavioral sensitization. The present study further explored the association between the changes in GSK-3β activity in the NAc and the chronic administration of methamphetamine. We also examined whether blocking GSK-3β activity in the NAc could alter the initiation and expression of methamphetamine (1 mg/kg, i.p.)-induced locomotor sensitization in rats using systemic administration of lithium chloride (LiCl, 100 mg/kg, i.p) and brain region-specific administration of the GSK-3β inhibitor SB216763 (1 ng/side). We found that GSK-3β activity increased in the NAc core, but not NAc shell, after chronic methamphetamine administration. The initiation and expression of methamphetamine-induced locomotor sensitization was attenuated by systemic administration of LiCl and direct infusion of SB216763 into the NAc core, but not NAc shell. These results indicate that GSK-3β activity in the NAc core mediates the initiation and expression of methamphetamine-induced locomotor sensitization, suggesting that GSK-3β may be a potential target for the treatment of psychostimulant addiction.  相似文献   

4.
Calpain produces a truncation of GSK3β that removes the N-terminal inhibitory domain. Here we analyze the effect of that truncation on protein-protein interaction. We pulled down GST-tagged proteins in the presence of full length GSK-3β and calpain-cleaved GSK-3β. Commercial GSK-3β was first incubated with calpain for 2.5 min in vitro, and then with GST-tagged proteins in the presence of calpeptin, a synthetic calpain inhibitor. Western blot analyses were performed to determine if there is an interaction between these GST-tagged proteins and truncated GSK-3β. Using axin GST-tagged, we pulled down the protein in the presence of full length GSK-3β and calpain-cleaved GSK-3β. Western blot analyses showed full length GSK-3β in the pellet as well GSK-3β cleaved by calpain. Thus axin was able to bind GSK-3β without the N-terminal end. When the same experiment was carried out with GST-tagged 14-3-3ζ, p53 and PKB, full length GSK-3β was observed in the pellet, but GSK-3β truncated by calpain was not pulled down demonstrating that GSK-3β N-terminal end is necessary to interact with these three proteins. Our data demonstrate that N-terminal end is necessary for 14-3-3ζ, p53 and PKB interaction. However, the interaction of GSK3β with axin is not altered by calpain. These data support a physiological role for GSK3β truncation mediated by calpain.  相似文献   

5.
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.  相似文献   

6.
The GSK-3 kinases, GSK-3α and GSK-3β, have a central role in regulating multiple cellular processes such as glycogen synthesis, insulin signaling, cell proliferation and apoptosis. GSK-3β is the most well studied, and was originally described for its role in regulating glycogen synthase. GSK-3β has been studied as a participant in the oncogenic process in a variety of cancers due to its intersection with the PTEN/PI3K/AKT and RAS/RAF/MEK/ERK pathways. Dysregulated signaling through the Notch family of receptors can also promote oncogenesis. Normal Notch receptor signaling regulates cell fate determination in stem cell pools. GSK-3β and Notch share similar targets such β-catenin and the WNT pathway. WNT and β-catenin are involved in several oncogenic processes including those of the colon. In addition, GSK-3β may directly regulate aspects of Notch signaling. This review describes how crosstalk between GSK-3β and Notch can promote oncogenesis, using colon cancer as the primary example.  相似文献   

7.
Wu P  Xue YX  Ding ZB  Xue LF  Xu CM  Lu L 《Journal of neurochemistry》2011,118(1):113-125
Exposure to cocaine-associated conditioned stimuli elicits craving and increases the probability of cocaine relapse in cocaine users even after extended periods of abstinence. Recent evidence indicates that cocaine seeking can be inhibited by disrupting the reconsolidation of the cocaine cue memories and that basolateral amygdala (BLA) neuronal activity plays a role in this effect. Previous studies demonstrated that glycogen synthase kinase 3β (GSK-3β) plays a role in the reconsolidation of fear memory. Here, we used a conditioned place preference procedure to examine the role of GSK-3β in the BLA in the reconsolidation of cocaine cue memories. GSK-3β activity in the BLA, but not central amygdala (CeA), in rats that acquired cocaine (10 mg/kg)-induced conditioned place preference increased after re-exposure to a previously cocaine-paired chamber (i.e., a memory reactivation procedure). Systemic injections of the GSK-3β inhibitor lithium chloride after memory reactivation impaired the reconsolidation of cocaine cue memories and inhibited subsequent cue-induced GSK-3β activity in the BLA. Basolateral amygdala, but not central amygdala, injections of SB216763, a selective inhibitor of GSK-3β, immediately after the reactivation of cocaine cue memories also disrupted cocaine cue memory reconsolidation and prevented cue-induced increases in GSK-3β activity in the BLA. The effect of SB216763 on the reconsolidation of cocaine cue memories lasted at least 2 weeks and was not recovered by a cocaine priming injection. These results indicate that GSK-3β activity in the BLA mediates the reconsolidation of cocaine cue memories.  相似文献   

8.
Glycogen synthase kinase-3β (GSK-3β) plays a crucial role in memory deficits and tau hyperphosphorylation as seen in Alzheimer's disease, the most common dementia in the aged population. We reported that ventricular co-injection of wortmannin and GF-109203X (WT/GFX) can induce tau hyperphosophorylation and memory impairment of rats through activation of GSK-3 [Liu S. J., Zhang A. H., Li H. L., Wang Q., Deng H. M., Netzer W. J., Xu H. X. and Wang J. Z. (2003) J. Neurochem. 87, 1333]. In the present study, we found that feeding the rats with Acetyl-L-Carnitine (ALCAR, 50 mg/day·rat, per os) for 2 weeks rescued the WT/GFX-induced spatial memory retention impairment of the rats by antagonizing GSK-3β activation independent of Akt, PKCζ and Erk1/2. We also found that ALCAR arrested microtubule-associated protein tau hyperphosphorylation at multiple Alzheimer's disease sites in vivo and in vitro. Moreover, ALCAR enhanced the expression of several memory-associated proteins including c-Fos, synapsin I in rat hippocampus. These results suggest that ALCAR could ameliorate WT/GFX-induced spatial memory deficits through inhibition tau hyperphosphorylation and modulation of memory-associated proteins.  相似文献   

9.
GSK-3β signaling is involved in regulation of both neuronal and glial cell functions, and interference of the signaling affects central nervous system (CNS) development and regeneration. Thus, GSK-3β was proposed to be an important therapeutic target for promoting functional recovery of adult CNS injuries. To further clarify the regulatory function of the kinase on the CNS regeneration, we characterized gecko GSK-3β and determined the effects of GSK-3β inactivation on the neuronal and glial cell lines, as well as on the gecko tail (including spinal cord) regeneration. Gecko GSK-3β shares 91.7-96.7% identity with those of other vertebrates, and presented higher expression abundance in brain and spinal cord. The kinase strongly colocalized with the oligodendrocytes while less colocalized with neurons in the spinal cord. Phosphorylated GSK-3β (pGSK-3β) levels decreased gradually during the normally regenerating spinal cord ranging from L13 to the 6th caudal vertebra. Lithium injection increased the pGSK-3β levels of the corresponding spinal cord segments, and in vitro experiments on neurons and oligodendrocyte cell line revealed that the elevation of pGSK-3β promoted elongation of neurites and oligodendrocyte processes. In the normally regenerate tails, pGSK-3β kept stable in 2 weeks, whereas decreased at 4 weeks. Injection of lithium led to the elevation of pGSK-3β levels time-dependently, however destructed the regeneration of the tail including spinal cord. Bromodeoxyuridine (BrdU) staining demonstrated that inactivation of GSK-3β decreased the proliferation of blastemal cells. Our results suggested that species-specific regulation of GSK-3β was indispensable for the complete regeneration of CNS.  相似文献   

10.
Bian  Hong  Bian  Wei  Lin  Xiaoying  Ma  Zhaoyin  Chen  Wen  Pu  Ying 《Neurochemical research》2016,41(9):2470-2480

To explore the effect of glycogen synthase kinase 3β (GSK-3β) silencing on Tau-5 phosphorylation in mice suffering Alzheimer disease (AD). GSK-3β was firstly silenced in human neuroblastoma SH-SY5Y cells using special lentivirus (LV) and the content of Tau (A-12), p-Tau (Ser396) and p-Tau (PHF-6) proteins. GSK-3β was also silenced in APP/PS1 mouse model of AD mice, which were divided into three groups (n = 10): AD, vehicle, and LV group. Ten C57 mice were used as control. The memory ability of mice was tested by square water maze, and the morphological changes of hippocampus and neuron death were analyzed by haematoxylin–eosin staining. Moreover, the levels of Tau and phosphorylated Tau (p-Tau) were detected by western blotting and immunohistochemistry, respectively. The lentivirus-mediated GSK-3β silencing system was successfully developed and silencing GSK-3β at the cellular level reduced Tau phosphorylation obviously. Moreover, GSK-3β silence significantly improved the memory ability of AD mice in LV group compared with AD group (P < 0.05) according to the latency periods and error numbers. As for the hippocampus morphology and neuron death, no significant change was observed between LV group and normal control. Immunohistochemical detection and western blotting revealed that the levels of Tau and p-Tau were significantly down-regulated after GSK-3β silence. Silencing GSK-3β may have a positive effect on inhibiting the pathologic progression of AD through down-regulating the level of p-Tau.

  相似文献   

11.
Zhai P  Sadoshima J 《Autophagy》2012,8(1):138-139
Autophagy is a catabolic process that degrades long-lived proteins, pathogens and damaged organelles. Autophagy is active in the heart at baseline and is further stimulated by stresses, such as nutrient starvation, ischemia/reperfusion (I/R) and heart failure. Baseline autophagy plays an adaptive role in the heart, and contributes to the maintenance of cardiac structure and function and the inhibition of age-associated abnormalities, by achieving quality control of proteins and organelles. Activation of autophagy during ischemia is beneficial because it improves cell survival and cardiac function. However, excessive autophagy with robust upregulation of BECN1 during reperfusion appears to enhance cell death, which is detrimental to the heart. We have shown recently that autophagy during prolonged ischemia and I/R is critically regulated by glycogen synthase kinase-3β (GSK-3β), a ubiquitously expressed serine/threonine kinase, in a phase-dependent manner. Here we discuss the role of GSK-3β in mediating autophagy in the heart.  相似文献   

12.
Glycogen synthase kinase-3 (GSK-3) is a widely expressed serine/threonine kinase regulates a variety of cellular processes including proliferation, differentiation and death. Mammals harbor two structurally similar isoforms GSK-3α and β that have overlapping as well as unique functions. Of the two, GSK-3β has been studied (and reviewed) in far greater detail with analysis of GSK-3α often as an afterthought. It is now evident that systemic, chronic inhibition of either GSK-3β or both GSK-3α/β is not clinically feasible and if achieved would likely lead to adverse clinical conditions. Emerging evidence suggests important and specific roles for GSK-3α in fatty acid accumulation, insulin resistance, amyloid-β-protein precursor metabolism, atherosclerosis, cardiomyopathy, fibrosis, aging, fertility, and in a variety of cancers. Selective targeting of GSK-3α may present a novel therapeutic opportunity to alleviate a number of pathological conditions. In this review, we assess the evidence for roles of GSK-3α in a variety of pathophysiological settings.  相似文献   

13.
Here we present the data indicating that chronic treatment with three antibipolar drugs, lithium, carbamazepine and valproic acid regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultured astrocytes. All three drugs down-regulate gene expression of Caveoline 1 (Cav-1), decrease membrane content of phosphatase and tensin homolog (PTEN), increase activity of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and serine-threonine kinase (AKT), and elevate glycogen synthase kinase 3β (GSK-3β) phosphorylation thus suppressing its activity. As expected, treatment with any of these three drugs increases glycogen content in astrocytes. Our findings indicate that regulation of glycogen content via Cav-1/PTEN/AKT/GSK-3β pathway by the three anti-bipoar drugs may be responsible for therapeutic effects of these drugs, and Cav-1 is an important signal element that may contribute to pathogenesis of various CNS diseases and regulation of its gene expression may be one of the underlying mechanisms of drug action for antibipolar drugs and antidepressants currently in clinical use.  相似文献   

14.
Tideglusib is a GSK-3 inhibitor currently in phase II clinical trials for the treatment of Alzheimer disease and progressive supranuclear palsy. Sustained oral administration of the compound to a variety of animal models decreases Tau hyperphosphorylation, lowers brain amyloid plaque load, improves learning and memory, and prevents neuronal loss. We report here that tideglusib inhibits GSK-3β irreversibly, as demonstrated by the lack of recovery in enzyme function after the unbound drug has been removed from the reaction medium and the fact that its dissociation rate constant is non-significantly different from zero. Such irreversibility may explain the non-competitive inhibition pattern with respect to ATP shown by tideglusib and perhaps other structurally related compounds. The replacement of Cys-199 by an Ala residue in the enzyme seems to increase the dissociation rate, although the drug retains its inhibitory activity with decreased potency and long residence time. In addition, tideglusib failed to inhibit a series of kinases that contain a Cys homologous to Cys-199 in their active site, suggesting that its inhibition of GSK-3β obeys to a specific mechanism and is not a consequence of nonspecific reactivity. Results obtained with [(35)S]tideglusib do not support unequivocally the existence of a covalent bond between the drug and GSK-3β. The irreversibility of the inhibition and the very low protein turnover rate observed for the enzyme are particularly relevant from a pharmacological perspective and could have significant implications on its therapeutic potential.  相似文献   

15.
The Wnt pathway is involved in cellular processes linked to either proliferation or differentiation. Therefore small molecules offer an attractive opportunity to modulate this pathway, whereas the key enzyme GSK-3β is of special interest. In this study, non-symmetrically substituted indolylmaleimides have been synthesized and their ability to function as GSK-3β inhibitors has been investigated in a human neural progenitor cell line. Among the newly synthesized compounds, the substance IM-12 showed a significant activity in several biological tests which was comparable or even outplayed the effects of the known GSK-3β inhibitor SB-216763. Furthermore the treatment of human neural progenitor cells with IM-12 resulted in an increase of neuronal cells. Therefore we conclude that indolylmaleimides act via the canonical Wnt signalling pathway by inhibition of the key enzyme GSK-3β.  相似文献   

16.
17.
18.
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca(2+) oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling.  相似文献   

19.
20.
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase which has attracted significant attention during recent years in drug design studies. The deregulation of GSK-3β increased the loss of hippocampal neurons by triggering apoptosis-mediating production of neurofibrillary tangles and alleviates memory deficits in Alzheimer’s disease (AD). Given its role in the formation of neurofibrillary tangles leading to AD, it has been a major therapeutic target for intervention in AD, hence was targeted in the present study. Twenty crystal structures were refined to generate pharmacophore models based on energy involvement in binding co-crystal ligands. Four common e-pharmacophore models were optimized from the 20 pharmacophore models. Shape-based screening of four e-pharmacophore models against nine established small molecule databases using Phase v3.9 had resulted in 1800 compounds having similar pharmacophore features. Rigid receptor docking (RRD) was performed for 1800 compounds and 20 co-crystal ligands with GSK-3β to generate dock complexes. Interactions of the best scoring lead obtained through RRD were further studied with quantum polarized ligand docking (QPLD), induced fit docking (IFD) and molecular mechanics/generalized Born surface area. Comparing the obtained leads to 20 co-crystal ligands resulted in 18 leads among them, lead1 had the lowest docking score, lower binding free energy and better binding orientation toward GSK-3β. The 50?ns MD simulations run confirmed the stable nature of GSK-3β-lead1 docking complex. The results from RRD, QPLD, IFD and MD simulations confirmed that lead1 might be used as a potent antagonist for GSK-3β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号