首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Escherichia coli RNA polymerase (RNAP) is the most studied bacterial RNAP and has been used as the model RNAP for screening and evaluating potential RNAP-targeting antibiotics. However, the x-ray crystal structure of E. coli RNAP has been limited to individual domains. Here, I report the x-ray structure of the E. coli RNAP σ70 holoenzyme, which shows σ region 1.1 (σ1.1) and the α subunit C-terminal domain for the first time in the context of an intact RNAP. σ1.1 is positioned at the RNAP DNA-binding channel and completely blocks DNA entry to the RNAP active site. The structure reveals that σ1.1 contains a basic patch on its surface, which may play an important role in DNA interaction to facilitate open promoter complex formation. The α subunit C-terminal domain is positioned next to σ domain 4 with a fully stretched linker between the N- and C-terminal domains. E. coli RNAP crystals can be prepared from a convenient overexpression system, allowing further structural studies of bacterial RNAP mutants, including functionally deficient and antibiotic-resistant RNAPs.  相似文献   

4.
5.
6.
7.
The study of protein-protein interactions is becoming increasingly important for understanding the regulation of many cellular processes. The ability to quantify the strength with which two binding partners interact is desirable but the accurate determination of equilibrium binding constants is a difficult process. The use of Luminescence Resonance Energy Transfer (LRET) provides a homogeneous binding assay that can be used for the detection of protein-protein interactions. Previously, we developed an LRET assay to screen for small molecule inhibitors of the interaction of σ70 with theβ'' coiled-coil fragment (amino acids 100–309). Here we describe an LRET binding assay used to monitor the interaction of E. coli σ70 and σ32 with core RNA polymerase along with the controls to verify the system. This approach generates fluorescently labeled proteins through the random labeling of lysine residues which enables the use of the LRET assay for proteins for which the creation of single cysteine mutants is not feasible. With the LRET binding assay, we are able to show that the interaction of σ70 with core RNAP is much more sensitive to NaCl than to potassium glutamate (KGlu), whereas the σ32 interaction with core RNAP is insensitive to both salts even at concentrations >500 mM. We also find that the interaction of σ32 with core RNAP is stronger than σ70 with core RNAP, under all conditions tested. This work establishes a consistent set of conditions for the comparison of the binding affinities of the E.coli sigma factors with core RNA polymerase. The examination of the importance of salt conditions in the binding of these proteins could have implications in both in vitro assay conditions and in vivo function.  相似文献   

8.
9.
The σs subunit of Escherichia coli RNA polymerase holoenzyme (EσS) is a key factor of gene expression upon entry into stationary phase and in stressful conditions. The selectivity of promoter recognition by EσS and the housekeeping Eσ70 is as yet not clearly understood. We used a genetic approach to investigate the interaction of σS with its target promoters. Starting with down-promoter variants of a σS promoter target, osmEp, altered in the –10 or –35 elements, we isolated mutant forms of σS suppressing the promoter defects. The activity of these suppressors on variants of osmEp and ficp, another target of σS, indicated that σS is able to interact with the same key features within a promoter sequence as σ70. Indeed, (i) σS can recognize the –35 element of some but not all its target promoters, through interactions with its 4.2 region; and (ii) amino acids within the 2.4 region participate in the recognition of the –10 element. More specifically, residues Q152 and E155 contribute to the strong preference of σS for a C in position –13 and residue R299 can interact with the –31 nucleotide in the –35 element of the target promoters.  相似文献   

10.
11.
12.
13.
14.
15.
H-NS is a major constituent of the Escherichia coli nucleoid, whereas ςS is a stress-induced sigma factor. An hns null mutation affects the cellular content of ςS in such a way that a remarkable accumulation of ςS is observed in the logarithmic growth phase, which results in enhanced expression of a number of ςS-dependent genes, including the katE gene. We isolated an extragenic mutation that affects the expression of the katE-lacZ fusion gene in the Δhns background. The relevant gene was identified as yhhP, which encodes a small polypeptide of 81 amino acids. Lesion of this gene seemed to affect the stability of ςS. A deletion analysis of yhhP revealed that this small protein plays a fundamental role in the general physiology of E. coli. The yhhP-deficient cell is not capable of growing in standard laboratory rich medium (i.e., Luria broth), resulting in the formation of filamentous cells. Homologs of this intriguing protein occur in a wide variety of bacterial species, including archaeal species.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号