首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在重组禽痘病毒中表达多个禽类病原的主要免疫原基因是构建多价基因工程疫苗的前提,但相关研究很少。在表达传染性喉气管炎病毒(ILTV)gB基因重组禽痘病毒的转移载体的基础上,构建了含有ILTV gB基因和新城疫病毒(NDV)F基因的重组禽痘病毒转移载体pSY-gB-F,采用脂质体转染禽痘病毒感染的鸡胚成纤维(CEF)细胞后,通过蓝斑试验筛选出重组禽痘病毒(rFPv-gB-F),并进行了6轮蚀斑纯化。Western-blot试验和间接免疫荧光试验证明ILTV gB基因和NBVF基因在rFPV-gB-F感染的CEF细胞中获得表达。为传染性喉气管炎、新城疫与鸡痘活载体多价疫苗的研制奠定基础。  相似文献   

2.
以ILTV基因组为模板 ,利用PCR特异扩增出gB基因 ,定向克隆到中间质粒载体pY_α ,构建了中间质粒pY_α_gB。然后以中间质粒pY_α_gB为模板 ,扩增出含有人结核分枝杆菌启动子hsp70基因和堪萨斯分枝杆菌α信号肽基因的hsp_α_gB片段 ,回收补平后与穿梭表达载体pRR3平端连接 ,从而构建大肠杆菌_分枝杆菌穿梭表达质粒pR_α_gB。再将其电转化至耻垢分枝杆菌M .smegmatismc2 15 5 ,ELISA检测表明重组菌株M .smegmatismc2 15 5 (pR_α_gB)的表达产物具有很好的反应原性。Westernblot检测说明gB基因在分枝杆菌中获得了表达并具有良好的免疫原性。鸡胚中和试验结果表明该重组菌株可以中和 1个剂量EID50 的ILTV强毒 ,能够保护SPF鸡胚抵抗强毒攻击  相似文献   

3.
Xu  Xiaohong  Qian  Jing  Qin  Lingsong  Li  Jindou  Xue  Cong  Ding  Jiaxin  Wang  Weiqi  Ding  Wei  Yin  Renfu  Jin  Ningyi  Ding  Zhuang 《中国病毒学》2020,35(4):455-467
Newcastle disease virus(NDV) and H9N2 subtype Avian influenza virus(AIV) are two notorious avian respiratory pathogens that cause great losses in the poultry industry. Current inactivated commercial vaccines against NDV and AIV have the disadvantages of inadequate mucosal responses, while an attenuated live vaccine bears the risk of mutation.Dendritic cell(DC) targeting strategies are attractive for their potent mucosal and adaptive immune-stimulating ability against respiratory pathogens. In this study, DC-binding peptide(DCpep)-decorated chimeric virus-like particles(cVLPs),containing NDV haemagglutinin–neuraminidase(HN) and AIV haemagglutinin(HA), were developed as a DC-targeting mucosal vaccine candidate. DCpep-decorated cVLPs activated DCs in vitro, and induced potent immune stimulation in chickens, with enhanced secretory immunoglobulin A(sIgA) secretion and splenic T cell differentiation. 40 μg cVLPs can provide full protection against the challenge with homologous, heterologous NDV strains, and AIV H9N2. In addition,DCpep-decorated cVLPs could induce a better immune response when administered intranasally than intramuscularly, as indicated by robust s IgA secretion and a reduced virus shedding period. Taken together, this chimericVLPs are a promising vaccine candidate to control NDV and AIV H9N2 and a useful platform bearing multivalent antigens.  相似文献   

4.
Infectious laryngotracheitis (ILT) is an acute, highly contagious upper-respiratory infectious disease of chickens. In this study, a real-time PCR method was developed for fast and accurate detection and quantitation of ILTV DNA of chickens experimentally infected with ILTV strain LJS09 and naturally infected chickens. The detection lower limit of the assay was 10 copies of DNA. There were no cross reactions with the DNA and RNA of infectious bursal disease virus, chicken anemia virus, reticuloendotheliosis virus, avian reovirus, Newcastle disease virus, and Marek''s disease virus. The real-time PCR was reproducible as the coefficients of variation of reproducibility of the intra-assay and the inter-assay were less than 2%. The real-time PCR was used to detect the levels of the ILTV DNA in the tissues of specific pathogen free (SPF) chickens infected with ILTV at different times post infection. ILTV DNA was detected by real-time PCR in the heart, liver, spleen, lung, kidney, larynx, tongue, thymus, glandular stomach, duodenum, pancreatic gland, small intestine, large intestine, cecum, cecal tonsil, bursa of Fabricius, and brain of chickens in the infection group and the contact-exposure group. The sensitivity, specificity, and reproducibility of the ILTV real-time PCR assay revealed its suitability for detection and quantitation of ILTV in the samples from clinically and experimentally ILTV infected chickens.  相似文献   

5.

Background

Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity.

Methodology/Principal Findings

In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH53). A single intramuscular immunization with NDV-sH53 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH53 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH53 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited.

Conclusions/Significance

Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines expressing a soluble form of a heterologous viral membrane protein. Such vectors may be advantageous as they preclude the incorporation of heterologous membrane proteins into the viral vector particles.  相似文献   

6.
7.
利用同源重组将新城疫病毒(NDV)的F和HN基因、传染性喉气管炎病毒(ILTV)的gB基因以及报告基因LacZ插入鸡痘病毒(FPV)的017株的复制非必需区,其中NDV的F、HN基因、ILTV的gB基因以及报告基因LacZ是在早晚期启动子LP2EP2的控制下,大肠杆菌报告基因LacZ在晚期启动子P11的控制下。经过10轮蓝斑纯化获得了包含了NDV的F和HN基因、ILTV的gB基因以及报告基因LacZ的重组鸡痘病毒,称为rFPV-F/HN/gB/LacZ。经PCR方法证明rFPV-F/HN/gB/LacZ基因组中含有NDV的F基因、HN基因和ILTVgB基因;间接免疫荧光试验和Western-blot试验表明NDV的F、HN蛋白和ILTVgB蛋白在rFPV-F/HN/gB/LacZ感染的CEF细胞中获得表达。与亲本毒相比,重组病毒在病毒的复制和致鸡胚成纤维细胞的病变方面无显著不同。这证明了在鸡痘病毒载体的一个复制非必需区可以同时插入多个禽类病原的多个外源基因,为制备多价基因工程疫苗奠定了基础。  相似文献   

8.

Background

Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.

Methodology/Principal Finding

Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.

Conclusion and Significance

Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals.  相似文献   

9.
H5N1 highly pathogenic avian influenza virus (HPAIV) causes periodic outbreaks in humans, resulting in severe infections with a high (60%) incidence of mortality. The circulating strains have low human-to-human transmissibility; however, widespread concerns exist that enhanced transmission due to mutations could lead to a global pandemic. We previously engineered Newcastle disease virus (NDV), an avian paramyxovirus, as a vector to express the HPAIV hemagglutinin (HA) protein, and we showed that this vaccine (NDV/HA) induced a high level of HPAIV-specific mucosal and serum antibodies in primates when administered through the respiratory tract. Here we developed additional NDV-vectored vaccines expressing either HPAIV HA in which the polybasic cleavage site was replaced with that from a low-pathogenicity strain of influenza virus [HA(RV)], in order to address concerns of enhanced vector replication or genetic exchange, or HPAIV neuraminidase (NA). The three vaccine viruses [NDV/HA, NDV/HA(RV), and NDV/NA] were administered separately to groups of African green monkeys by the intranasal/intratracheal route. An additional group of animals received NDV/HA by aerosol administration. Each of the vaccine constructs was highly restricted for replication, with only low levels of virus shedding detected in respiratory secretions. All groups developed high levels of neutralizing antibodies against homologous and heterologous strains of HPAIV and were protected against challenge with 2 × 107 PFU of homologous HPAIV. Thus, needle-free, highly attenuated NDV-vectored vaccines expressing either HPAIV HA, HA(RV), or NA have been developed and demonstrated to be individually immunogenic and protective in a primate model of HPAIV infection. The finding that HA(RV) was protective indicates that it would be preferred for inclusion in a vaccine. The study also identified NA as an independent protective HPAIV antigen in primates. Furthermore, we demonstrated the feasibility of aerosol delivery of NDV-vectored vaccines.H5N1 highly pathogenic avian influenza virus (HPAIV) was first detected in human infections in 1997; previously, it had been found only in birds (11, 50). To date, this virus has been identified in 436 confirmed cases of human infection in 15 countries, 262 (60%) of which were fatal (75). The currently circulating H5N1 strains are characterized by low human-to-human transmissibility. This has been attributed, in part, to a preference for binding to α-2,3-linked sialic acids that are present in high concentrations throughout the avian respiratory tract but were thought to be found primarily in the lower human respiratory tract (57), although this explanation has been questioned (48, 49). It has also been observed that mutations in the PB2 subunit of the viral polymerase are necessary to confer the ability for the virus to be spread by aerosolized nasal droplets in ferrets (72). Whatever factors may be involved, there is widespread concern that the avian virus could mutate to enhance its transmissibility among humans, possibly resulting in a global pandemic (28, 50). For the avian H9N2 virus, which also has pandemic potential, it has been demonstrated that only five amino acid changes were sufficient for the virus to gain the ability to be spread by aerosolized nasal droplets in a ferret model (60). Thus, there is an urgent need for vaccines against HPAIV.Several vaccine strategies for HPAIV have been evaluated (reviewed in references 32 and 41), including inactivated and live attenuated vaccines. These efforts have been hampered by several factors. HPAIV strains are highly virulent for embryonated chicken eggs, the most widely used substrate for vaccine manufacture, and their rapid death following inoculation renders eggs unsuitable for efficient virus propagation. In addition, the major protective antigen, hemagglutinin (HA), administered either as a purified protein or in inactivated HPAIV virions, appears to be poorly immunogenic (69, 70). An additional factor complicating the development of HPAIV vaccines based on inactivated virus is the high cost and biohazard associated with HPAIV propagation, which must be done under enhanced biosafety level 3 (BSL-3) containment, although this problem might be addressed by the use of live attenuated reassortant influenza virus vaccines that contain the HPAIV glycoproteins on the background of an avirulent human influenza virus strain (24, 37). In addition, such reassortant strains might serve directly as live attenuated vaccines. Unfortunately, the latter approach may be limited by subtle and unpredictable incompatibility between the avian-origin glycoproteins and human-origin vaccine backgrounds acceptable for human use, which can result in overattenuation in vivo (24). There are also lingering concerns about the significant potential, with a live HPAIV vaccine, for reassortment between gene segments of the vaccine virus and circulating influenza virus strains, which might result in novel strains with unpredictable biological properties (63).We and others have been evaluating Newcastle disease virus (NDV) as a general human vaccine vector for emerging pathogens, including H5N1 HPAIV (7, 18-20, 29). NDV is an avian paramyxovirus that is antigenically unrelated to common human pathogens; hence, its use in humans should not be affected by host immunity to common pathogens. The many naturally occurring strains of NDV can be categorized into three pathotypes based on virulence in chickens: velogenic strains, causing severe disease with high mortality; mesogenic strains, causing disease of intermediate severity with low mortality; and lentogenic strains, causing mild or inapparent infections (reviewed in reference 2). Lentogenic, and sometimes mesogenic, strains of NDV are in wide use as live attenuated vaccines against velogenic NDV in poultry (2). When mesogenic or lentogenic NDV was administered to the respiratory tracts of nonhuman primates as a model for the immunization of humans, the virus was highly attenuated for replication, was shed only at low titers, appeared to remain restricted to the respiratory tract, and was highly immunogenic for the expressed foreign antigen (7). We recently demonstrated that a mesogenic strain of NDV expressing the HA protein of H5N1 HPAIV (NDV/HA) elicited high titers of neutralizing antibodies in serum following combined intranasal (i.n.) and intratracheal (i.t.) delivery in a nonhuman primate model (20). Vaccination of mice with a similar NDV-vectored vaccine protected them from HPAIV challenge (29). However, results obtained with mice do not reliably predict the efficacy of an influenza virus vaccine for human use, due to the pathophysiological and phylogenetic differences between mice and humans (71). In particular, mice may produce a potent immune response to HPAIV vaccines (64) that may not be reproduced in clinical trials (38). These considerations are especially important for a vaccine based on a live viral vector platform, since its immunogenicity, and therefore its protective efficacy, is directly linked to replication, which can differ greatly in various experimental animals versus humans (reviewed in references 6 and 9). Therefore, the protective efficacy of NDV-based vaccines against HPAIV challenge in nonhuman primate models—the closest model to humans—has remained unknown.The protease recognition sequence of the HA protein is one of the major determinants of avian influenza virus pathogenicity (62). HPAIV strains have a “polybasic” cleavage site, containing multiple basic amino acids, that is readily cleaved by ubiquitous intracellular subtilisin-like proteases, facilitating the replication and spread of the virus. In contrast, the HA cleavage site of low-pathogenicity strains contains fewer basic amino acids and depends on secretory trypsin-like proteases found in the respiratory and enteric tracts, resulting in more-localized infections (30, 62). The presence of a polybasic cleavage site in the H5 HA of any live vaccine raises some concern about the possibility of genetic exchange with circulating strains of influenza virus. It should be noted that genetic exchange involving paramyxoviruses is a rare event (14) that has been documented only once (61). However, elimination of the polybasic HA cleavage site would mitigate the effects of even this rare possibility of genetic exchange. Another concern was based on our previous finding that the HPAIV H5 HA protein is incorporated into the NDV envelope as a trimer (20), consistent with its presence in a functional form. While we previously showed that this did not enhance the pathogenicity of the NDV/HA recombinant in chickens (20), we could not rule out the possibility that it might confer an altered tropism on the NDV/HA virus in other systems. For example, a recombinant parainfluenza virus type 3 expressing the Ebola virus glycoprotein incorporated the foreign protein into its envelope, allowing cellular attachment and fusion of the vaccine virus independently of the vector''s own envelope glycoproteins (10).In addition to the HA protein, the neuraminidase (NA) protein is also present on the surfaces of influenza virus-infected cells and virions. Antibodies specific for NA are not thought to interfere with the initial viral attachment and penetration of host cells (36, 40, 54). However, NA-specific antibodies prevent the release of virus from infected cells, thereby decreasing viral spread (35), and they increase resistance to viral infection in humans (40, 47, 54). They also provide at least some protection against viruses bearing homologous or heterologous NA proteins of the same subtype in a mouse model (12, 56). NA also appears to evolve at a lower rate than HA, suggesting that NA-specific antibodies may provide broader protection than a vaccine utilizing HA alone (39). Therefore, it was important to assess the immunogenicity and protective efficacy of the HPAIV NA independently of those of HA, which has not previously been done in a human or nonhuman primate model.  相似文献   

10.
Infectious laryngotracheitis virus (ILTV) causes acute upper respiratory tract disease in chickens. Attenuated live ILTV vaccines are often used to help control disease, but these vaccines have well documented limitations, including retention of residual virulence, incomplete protection, transmission of vaccine virus to unvaccinated birds and reversion to high levels of virulence following bird-to-bird passage. Recently, two novel ILTV field strains (class 8 and 9 ILTV viruses) emerged in Australia due to natural recombination between two genotypically distinct commercial ILTV vaccines. These recombinant field strains became dominant field strains in important poultry producing areas. In Victoria, Australia, the recombinant class 9 virus largely displaced the previously predominant class 2 ILTV strain. The ability of ILTV vaccines to protect against challenge with the novel class 9 ILTV strain has not been studied. Here, the protection induced by direct (drinking-water) and indirect (contact) exposure to four different ILTV vaccines against challenge with class 9 ILTV in commercial broilers was studied. The vaccines significantly reduced, but did not prevent, challenge virus replication in vaccinated chickens. Only one vaccine significantly reduced the severity of tracheal pathology after direct drinking-water vaccination. The results indicate that the current vaccines can be used to help control class 9 ILTV, but also indicate that these vaccines have limitations that should be considered when designing and implementing disease control programs.  相似文献   

11.
Herpesviruses minimally require the envelope proteins gB and gH/gL for virus entry and cell-cell fusion; herpes simplex virus (HSV) additionally requires the receptor-binding protein gD. Although gB is a class III fusion protein, gH/gL does not resemble any documented viral fusion protein at a structural level. Based on those data, we proposed that gH/gL does not function as a cofusogen with gB but instead regulates the fusogenic activity of gB. Here, we present data to support that hypothesis. First, receptor-positive B78H1-C10 cells expressing gH/gL fused with receptor-negative B78H1 cells expressing gB and gD (fusion in trans). Second, fusion occurred when gH/gL-expressing C10 cells preexposed to soluble gD were subsequently cocultured with gB-expressing B78 cells. In contrast, prior exposure of gB-expressing C10 cells to soluble gD did not promote subsequent fusion with gH/gL-expressing B78 cells. These data suggest that fusion involves activation of gH/gL by receptor-bound gD. Most importantly, soluble gH/gL triggered a low level of fusion of C10 cells expressing gD and gB; a much higher level was achieved when gB-expressing C10 cells were exposed to a combination of soluble gH/gL and gD. These data clearly show that gB acts as the HSV fusogen following activation by gD and gH/gL. We suggest the following steps leading to fusion: (i) conformational changes to gD upon receptor binding, (ii) alteration of gH/gL by receptor-activated gD, and (iii) upregulation of the fusogenic potential of gB following its interaction with activated gH/gL. The third step may be common to other herpesviruses.Herpesviruses enter cells by fusing their envelopes with host cell membranes either by direct fusion at the plasma membrane or by pH-dependent or -independent endocytosis, depending on the target cell (27, 29, 39). Although the entry pathways of other enveloped viruses are similarly diverse (8), all systems for which molecular details have been obtained rely on a single fusion protein (43); herpesviruses are unique in their use of gB and the gH/gL heterodimer as their core fusion machinery (17, 37). Some herpesviruses employ additional receptor-binding glycoproteins, e.g., herpex simplex virus (HSV) gD, and others require gH/gL-associated proteins, e.g., UL128-131 of cytomegalovirus (CMV) (34) or gp42 of Epstein-Barr virus (EBV) (42). This complexity has made it difficult to unravel the mechanism of herpesvirus entry.Ultrastructural and biochemical studies have shown that for HSV entry, binding of gD to one of its receptors, either HVEM or nectin-1 (36), activates the downstream events that drive gB- and gH/gL-dependent fusion (17). The structure of the gB ectodomain (18) bears striking structural homology to the postfusion form of the single fusion protein G of vesicular stomatitis virus (VSV) (33). However, unlike the other class III viral fusion proteins, VSV G and baculovirus gp64 (5), gB requires gH/gL to function in virus-cell and cell-cell fusion (17). A number of investigations support the concept that gH/gL might also be fusogenic (13, 41). Some have suggested that a multiprotein complex comprised of gD, gH/gL, and gB might be assembled to cause fusion (14). Using bimolecular complementation (BiMC), we and others showed that interactions can occur between half enhanced yellow fluorescent protein (EYFP)-tagged gB (e.g., gBn) and tagged gD (e.g., gDc) or between tagged gD and tagged gH (1, 3). However, because these occur in the absence of one of the other essential components, e.g., a receptor, we could not assess their functional significance. Importantly, gH/gL and gB interact with each other only in response to receptor binding by gD (1-3, 12). We subsequently showed that this interaction precedes fusion and is required for it to occur (2). Thus, we were able to conclude that gH/gL must interact with gB, whether transiently or stably, in order for fusion to occur. Whether gD was indeed involved in a multiprotein complex was not clear, nor was the role of gH/gL in promoting fusion initiated by gD-receptor binding. The lack of structural data for gH/gL left its potential role as a fusogen unresolved.However, in 2010, the structure of gH/gL of HSV-2 was solved in collaboration with Chowdary et al. (12). Structurally, gH/gL does not resemble any known viral fusogen, thereby forcing a reconsideration of its function in promoting virus-cell and cell-cell fusion. We hypothesized that gH/gL does not likely act as a cofusogen with gB but rather regulates fusion by gB (12).In this report, we argue that as a regulator of fusion, gH/gL might not have to be in the same membrane as gB in order to regulate its activity, i.e., gH/gL on one cell might promote fusion of gB expressed by another cell, as long as gD and a gD receptor are also present. In support of this, it was recently shown that gH/gL and gB of human cytomegalovirus (HCMV) can cause cell-cell fusion when expressed by distinct cells (in trans) (41). We present evidence that HSV gB and gH/gL can cause cell-cell fusion when they are expressed in trans, a process that requires both gD and a gD receptor. Although the efficiency of fusion in trans is low compared with that of fusion when gB and gH/gL are in cis (as they would be when in the virus), separation of these proteins onto two different cells enabled us to dissect the order in which each protein acts along the pathway to fusion. Moreover, we found that a combination of soluble gD (not membrane bound) and soluble gH/gL (also not membrane bound) could trigger fusion of receptor-bearing cells that had been transfected with the gene for gB. Our data show that gD, gH/gL, and gB act in a series of steps whereby gD is first activated by binding its cell receptor. Previous studies showed that receptor binding causes gD to undergo conformational changes (17). Based on the data in this paper, we propose that these changes then enable gD to activate gH/gL into a form that in turn binds to and activates the fusogenic activity of gB. Although we do not know whether any of these reactions result in the formation of a stable complex, our data suggest that gB is the sole HSV fusogen and that gD and gH/gL act to upregulate cell-cell fusion and most likely virus-cell fusion, leading to HSV entry.  相似文献   

12.
13.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   

14.
Newcastle disease (ND) is one of the most devastating poultry infections because of its worldwide distribution and accompanying economical threat. In the present study, we characterized the ND virus (NDV) K148/08 strain from wild mallard duck, with regard to safety, thermostability, immunogenicity, and protective efficacy against velogenic ND viral infection. The NDV K148/08 strain offered enhanced immunogenicity and safety relative to commercially available vaccine strains. The NDV K148/08 strain was safe in 1-day-old SPF chicks after vaccination using a coarse or cabinet-type fine sprayer. We demonstrated that the NDV K148/08 strain elicited high levels of antibody responses and provided protective efficacy against lethal NDV challenge. In addition, the thermostability of the NDV K148/08 strain was as high as that of the thermostable V4 strain. Therefore, the NDV K148/08 strain may be useful to ensure NDV vaccine performance and effectiveness in developing countries, especially in remote areas without cold chains.  相似文献   

15.
The polypeptides of three paramyxoviruses (simian virus 5, Newcastle disease virus, and Sendai virus) were separated by polyacrylamide gel electrophoresis. Glycoproteins were identified by the use of radioactive glucosamine as a carbohydrate precursor. The protein patterns reveal similarities among the three viruses. Each virus contains at least five or six proteins, two of which are glycoproteins. Four of the proteins found in each virus share common features with corresponding proteins in the other two viruses, including similar molecular weights. These four proteins are the nucleocapsid protein (molecular weight 56,000 to 61,000), a larger glycoprotein (molecular weight 65,000 to 74,000), a smaller glycoprotein (molecular weight 53,000 to 56,000), and a major protein which is the smallest protein in each virion (molecular weight 38,000 to 41,000).  相似文献   

16.
A method for the rapid detection and quantification of Newcastle disease virus (NDV) produced in an animal cell culture-based production system was developed to enhance the speed of the NDV vaccine manufacturing process. A SYBR Green I-based real-time RT-PCR was designed with a conventional, inexpensive RT-PCR kit targeting the F gene of the NDV LaSota strain. The method developed in this study was validated for specificity, accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The validation results satisfied the predetermined acceptance criteria. The validated method was used to quantify virus samples produced in an animal cell culture-based production system. The method was able to quantify the NDV samples from mid- or late-production phases, but not effective on samples from the early-production phase. For comparison with other quantifiable methods, immunoblotting, plaque assay, and tissue culture infectious dose 50 (TCID50) assay were also performed with the NDV samples. The results demonstrated that the real-time RT-PCR method is suitable for the rapid quantification of virus particles produced in an animal cell-culture-based production system irrespective of viral infectivity.  相似文献   

17.
目的:证明NDV D90是否具有抑制口腔鳞癌细胞系迁移和侵袭的能力。方法:免疫荧光染色法检测D90对细胞微管和微丝形态的改变;Transwell法检测D90对HN-6细胞迁移和侵袭率的抑制作用;蛋白印迹法检测D90对于SP1、RECK、MMP-2和MMP-9表达的影响;明胶酶谱法用于检测MMP-2和MMP-9活性的改变。结果:实验结果表明,D90通过改变细胞的微管和微丝形态来抑制细胞的能动性;D90具有抑制HN-6细胞的迁移和侵袭的功能。同时,D90通过下调SP1和上调RECK的表达来抑制MMP-2和MMP-9的表达和活性。结论:NDV D90能够有效地抑制口腔鳞癌细胞系HN-6的迁移和侵袭,为一种新的抗肿瘤制剂提供了临床试验基础。  相似文献   

18.
传染性法氏囊病病毒(IBDV)蛋白VP4在抑制宿主免疫应答中起重要作用,为制备IBDV VP4的单克隆抗体,以实验室保存的融合蛋白His-VP4免疫BALB/c小鼠,经过细胞融合、筛选、亚克隆后获得4株能稳定分泌抗VP4的单抗杂交瘤细胞株,分别命名为3B3、3H11、4C8和4G6,经间接ELISA测定4株单抗的亲和力解离常数分别为4.61×10–11、1.71×10–10、4.26×10–11和5.02×10–11,均为高亲和力抗体。4株单抗的重链类型分别为Ig G1、Ig G1、Ig G2b和Ig G1。进一步以Western blotting鉴定,该4株单抗均能特异地识别IBDV的VP4蛋白,间接免疫荧光和Western blotting试验表明4株单抗均能识别IBDV感染DF-1细胞后产生的VP4蛋白。该单抗为检测IBDV以及研究IBDV VP4的生物学作用奠定了基础。  相似文献   

19.
利用反向遗传技术获得表达H5亚型禽流感病毒(AIV)血凝素(HA)的新城疫病毒(NDV)。克隆NDV clone 30的全长基因,通过在NDV的融合蛋白基因和血凝素-神经氨酸酶(HN)基因之间插入编码高致病性AIV分离株A/chicken/italy/8/98(H5N2)的血凝素基因开放阅读框从而获得两株重组新城疫病毒NDVH5和NDVH5m。NDVH5感染的细胞可以检测到两种HA转录产物。对于重组病毒NDVH5m,NDV位于HA ORF的转录终止信号序列被沉默突变消除,产生2.7个全长HA转录产物的折叠,从而使修饰过的HA得到稳定地高表达。1日龄小鸡的脑内接种证实了两种重组病毒均无致病性。鸡群在NDVH5m诱导产生的NDV和H5亚型AIV HA特异性抗体的免疫力下能够免于致死剂量的NDV与高致病性AIV的感染。血清学研究结果表明NDVH5m免疫鸡群产生的抗体可结合NP蛋白抗体的检测从而用于区分免疫和感染AIV的动物。因此,NDVH5m重组病毒可作为抗NDV和AIV的"二联疫苗",也可成为控制AJ的标记疫苗。  相似文献   

20.
Ability of 14 Newcastle disease virus strains to produce large plaques was related to virulence for chickens. Plaque-size comparisons were made under standard conditions in chick embryo cell monolayers. All plaque-producing strains showed a range of plaque sizes modified to a degree by the overlay medium used. An increase in size was found for most strains under methyl-cellulose overlay medium. Markedly larger plaques were found under this medium for both Calif-RO and Calif-CG strains. Heterogeneity in plaque size was most pronounced in velogenic (high virulence) strains. Only populations of small plaques were found in mesogenic (intermediate virulence) strains, and plaques were rarely found in lentogenic (low virulence) strains. Statistical analysis showed that the plaque size of velogenic strains differed significantly from mesogenic strains. None of the 11 plaque-producing strains had a normal distribution of plaque sizes, owing primarily to the presence of different genotypes within the plaquing population of a strain. This was demonstrated by derivation of clones from two of the strains. The populations of the large (Herts L) and small (Herts S) clear plaque clones derived from Eng-Herts were homogenous and distinct from one another on the basis of plaque size. Herts L was more virulent than Herts S. Although Herts L became more heterogenous in respect to plaque size upon repeated passage in embryonated eggs, no decrease in virulence of the strain was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号