首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
DNA damage has been shown to regulate DNA replication both by inhibition of origin utilization, and by slowing of replication progression. We have recently reported another mechanism by which DNA damage affects replication, in which the presence of damaged DNA inhibits, in trans, the initiation of chromosomal replication. This inhibition occurs by blocking the association of the processivity clamp PCNA with undamaged chromatin. This inhibitory activity is not due to sequestration of replication factors by the damaged DNA, rather, it acts through generation of a diffusible inhibitor of PCNA loading. The activation of this pathway is independent of canonical checkpoint signaling, and, in fact, results in activation of the checkpoint. This novel pathway may therefore represent an amplification step to stop cell cycle progression in response to lower levels of DNA damage.  相似文献   

3.
In Escherichia coli, recF and recR are required to stabilize and maintain replication forks arrested by UV-induced DNA damage. In the absence of RecF, replication fails to recover, and the nascent lagging strand of the arrested replication fork is extensively degraded by the RecQ helicase and RecJ nuclease. recO mutants are epistatic with recF and recR with respect to recombination and survival assays after DNA damage. In this study, we show that RecO functions with RecF and RecR to protect the nascent lagging strand of arrested replication forks after UV-irradiation. In the absence of RecO, the nascent DNA at arrested replication forks is extensively degraded and replication fails to recover. The extent of nascent DNA degradation is equivalent in single, double, or triple mutants of recF, recO, or recR, and the degradation is dependent upon RecJ and RecQ functions. Because RecF has been shown to protect the nascent lagging strand from degradation, these observations indicate that RecR and RecO function with RecF to protect the same nascent strand of the arrested replication fork and are likely to act at a common point during the recovery process. We discuss these results in relation to the biochemical and cellular properties of RecF, RecO, and RecR and their potential role in loading RecA filaments to maintain the replication fork structure after the arrest of replication by UV-induced DNA damage.  相似文献   

4.
  相似文献   

5.
The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from ssDNA using purified Thermus thermophilus RecF pathway proteins. To date, RecO and RecR are thought to act as the RecOR complex. However, our results indicate that RecO and RecR have distinct functions. We found that RecR binds both RecF and RecO, and that RecO binds RecR, SSB and ssDNA. The electron microscopic studies indicated that SSB is displaced from ssDNA by RecO. In addition, pull-down assays indicated that the displaced SSB still remains indirectly attached to ssDNA through its interaction with RecO in the RecO-ssDNA complex. In the presence of both SSB and RecO, the ssDNA-dependent ATPase activity of RecA was inhibited, but was restored by the addition of RecR. Interestingly, the interaction of RecR with RecO affected the ssDNA-binding properties of RecO. These results suggest a model of SSB displacement from the ssDNA by RecF pathway proteins.  相似文献   

6.
7.
The RecR protein forms complexes with RecF or RecO that direct the specific loading of RecA onto gapped DNA. However, the binding sites of RecF and RecO on RecR have yet to be identified. In this study, a Thermus thermophilus RecR dimer model was constructed by NMR analysis and homology modeling. NMR titration analysis suggested that the hairpin region of the helix-hairpin-helix motif in the cavity of the RecR dimer is a binding site for double-stranded DNA (dsDNA) and that the acidic cluster region of the Toprim domain is a RecO binding site. Mutations of Glu-84, Asp-88, and Glu-144 residues comprising that acidic cluster were generated. The E144A and E84A mutations decreased the binding affinity for RecO, but the D88A did not. Interestingly, the binding ability to RecF was abolished by E144A, suggesting that the region surrounding the RecR Glu-144 residue could be a binding site not only for RecO but also for RecF. Furthermore, RecR and RecF formed a 4:2 heterohexamer in solution that was unaffected by adding RecO, indicating a preference by RecR for RecF over RecO. The RecFR complex is considered to be involved in the recognition of the dsDNA-ssDNA junction, whereas RecO binds single-stranded DNA (ssDNA) and ssDNA-binding protein. Thus, the RecR Toprim domain may contribute to the RecO interaction with RecFR complexes at the dsDNA-ssDNA junction site during recombinational DNA repair mediated by the RecFOR.  相似文献   

8.
Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork “collapse point” in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.  相似文献   

9.
DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5′-3′ helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.  相似文献   

10.
RecR is an important recombination mediator protein in the RecFOR pathway. RecR together with RecO and RecF facilitates RecA nucleoprotein filament formation and homologous pairing. Structural and biochemical studies of Thermoanaerobacter tengcongensis RecR (TTERecR) and its series mutants revealed that TTERecR uses the N-N dimer as a basic functional unit to interact with TTERecO monomer. Two TTERecR N-N dimers form a ring-shaped tetramer via an interaction between their C-terminal regions. The tetramer is a result of crystallization only. Hydrophobic interactions between the entire helix-hairpin-helix domains within the N-terminal regions of two TTERecR monomers are necessary for formation of a RecR functional N-N dimer. The TTERecR N-N dimer conformation also affects formation of a hydrophobic patch, which creates a binding site for TTERecO in the TTERecR Toprim domain. In addition, we demonstrate that TTERecR does not bind single-stranded DNA (ssDNA) and binds double-stranded DNA very weakly, whereas TTERecOR complex can stably bind DNA, with a higher affinity for ssDNA than double-stranded DNA. Based on these results, we propose an interaction model for the RecOR:ssDNA complex.  相似文献   

11.
12.
We analyzed effects of overexpression of RecE and RecT on illegitimate recombination during prophage induction in Escherichia coli and found that frequencies of spontaneous and UV-induced illegitimate recombination are enhanced by coexpression of RecE and RecT in the wild type, but the enhanced recombination was reduced by recJ, recO, or recR mutation. The results indicated that RecET-mediated illegitimate recombination depends on the functions of RecJ, RecO, and RecR, suggesting that the RecE and RecJ exonucleases play different roles in this recombination pathway and that the RecO and RecR proteins also play important roles in the recombination. On the other hand, the frequency of the RecET-mediated illegitimate recombination was enhanced by a recQ mutation, implying that the RecQ protein plays a role in suppression of RecET-mediated illegitimate recombination. It was also found that RecET-mediated illegitimate recombination is independent of the RecA function with UV irradiation, but it is enhanced by the recA mutation without UV irradiation. Based on these results, we propose a model for the roles of RecJOR on RecET-mediated illegitimate recombination.  相似文献   

13.
The cyclin-dependent kinase (CDK) inhibitor roscovitine is under evaluation in clinical trials for its antiproliferative properties. Roscovitine arrests cell cycle progression in G1 and in G2 phase by inhibiting CDK2 and CDK1, and possibly CDK7 and CDK9. However, the effects of CDK2 inhibition in S-phase cells have been not fully investigated. Here, we show that a short-term treatment with roscovitine is sufficient to inhibit DNA synthesis, and to activate a DNA damage checkpoint response, as indicated by phosphorylation of p53-Ser15, replication protein A, and histone H2AX. Analysis of DNA replication proteins loaded onto DNA during S phase showed that the amount of proliferating cell nuclear antigen (PCNA), a cofactor of DNA replication enzymes, was significantly reduced by roscovitine. In contrast, chromatin-bound levels of DNA polymerase δ, DNA ligase I and CDK2, were stabilized. Checkpoint inhibition with caffeine could rescue PCNA disassembly only partially, pointing to additional effects due to CDK2 inhibition and the presence of replication stress. These results suggest that in S-phase cells, roscovitine induces checkpoint-dependent and -independent effects, leading to stabilization of replication forks and an uncoupling between PCNA and PCNA-interacting proteins.  相似文献   

14.
H. S. Maniar  R. Wilson    S. J. Brill 《Genetics》1997,145(4):891-902
Replication Protein-A, the eukaryotic SSB, consists of a large subunit (RPA1) with strong ssDNA binding activity and two smaller subunits (RPA2 and 3) that may cooperate with RPA1 to bind ssDNA in a higher-order mode. To determine the in vivo function of the two smaller subunits and the potential role of higher-order ssDNA binding, we isolated an assortment of heat-lethal mutations in the genes encoding RPA2 and RPA3. At the permissive temperature, the mutants show a range of effects on DNA replication fidelity and sensitivities to UV and MMS. At the nonpermissive temperature, four out of five RPA2 mutants show a fast-stop DNA synthesis phenotype typical of a replication fork block. In contrast, the fifth RPA2 mutant and all RPA3 mutants are able to complete at least one round of DNA replication at the nonpermissive temperature. The effect of these mutations on the stability of the RPA complex was tested using a coprecipitation assay. At the nonpermissive temperature, we find that RPA1 and RPA2 are dissociated in the fast-stop mutants, but not in the slow-stop mutants. Thus, replication fork movement in vivo requires the association of at least two subunits of RPA. This result is consistent with the hypothesis that RPA functions in vivo by binding ssDNA in a higher-order mode.  相似文献   

15.
Cyclin E is a regulator of cyclin-dependent protein kinases (Cdks) and is involved in mediating the cell cycle transition from G1 to S phase. Here, we describe a novel function for cyclin E in the long term maintenance of checkpoint arrest in response to replication barriers. Exposure of cells to mitomycin C or UV irradiation, but not ionizing radiation, induces stabilization of cyclin E. Stabilization of cyclin E reduces the activity of Cdk2-cyclin A, resulting in a slowing of S phase progression and arrest. In addition, cyclin E is shown to be required for stabilization of Cdc6, which is required for activation of Chk1 and the replication checkpoint pathway. Furthermore, the stabilization of cyclin E in response to replication fork barriers depends on ATR, but not Nbs1 or Chk1. These results indicate that in addition to its well studied role in promoting cell cycle progression, cyclin E also has a role in regulating cell cycle arrest in response to DNA damage.  相似文献   

16.
The parvovirus adeno-associated virus (AAV) contains a small single-stranded DNA genome with inverted terminal repeats that form hairpin structures. In order to propagate, AAV relies on the cellular replication machinery together with functions supplied by coinfecting helper viruses such as adenovirus (Ad). Here, we examined the host cell response to AAV replication in the context of Ad or Ad helper proteins. We show that AAV and Ad coinfection activates a DNA damage response (DDR) that is distinct from that seen during Ad or AAV infection alone. The DDR was also triggered when AAV replicated in the presence of minimal Ad helper proteins. We detected autophosphorylation of the kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and signaling to downstream targets SMC1, Chk1, Chk2, H2AX, and XRCC4 and multiple sites on RPA32. The Mre11 complex was not required for activation of the DDR to AAV infection. Additionally, we found that DNA-PKcs was the primary mediator of damage signaling in response to AAV replication. Immunofluorescence revealed that some activated damage proteins were found in a pan-nuclear pattern (phosphorylated ATM, SMC1, and H2AX), while others such as DNA-PK components (DNA-PKcs, Ku70, and Ku86) and RPA32 accumulated at AAV replication centers. Although expression of the large viral Rep proteins contributed to some damage signaling, we observed that the full response required replication of the AAV genome. Our results demonstrate that AAV replication in the presence of Ad helper functions elicits a unique damage response controlled by DNA-PK.Replication of viral genomes produces a large amount of extrachromosomal DNA that may be recognized by the cellular DNA damage machinery. This is often accompanied by activation of DNA damage response (DDR) signaling pathways and recruitment of cellular repair proteins to sites of viral replication. Viruses therefore provide good model systems to study the recognition and response to DNA damage (reviewed in reference 48). The Mre11/Rad50/Nbs1 (MRN) complex functions as a sensor of chromosomal DNA double-strand breaks (DSBs) and is involved in activation of damage signaling (reviewed in reference 41). The MRN complex also localizes to DNA DSBs and is found at viral replication compartments during infection with a number of DNA viruses (6, 40, 47, 70, 75, 77, 87, 93). The phosphatidylinositol 3-kinase-like kinases (PIKKs) ataxia telangiectasia mutated (ATM), ATM and Rad3-related kinase (ATR), and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) are involved in the signal transduction cascades activated by DNA damage (reviewed in references 43, 51, and 71). These kinases respond to distinct types of damage and regulate DSB repair during different phases of the cell cycle (5), either through nonhomologous end-joining (NHEJ) or homologous recombination pathways (reviewed in references 63, 81, and 86). The DNA-PK holoenzyme is composed of DNA-PKcs and two regulatory subunits, the Ku70 and Ku86 heterodimer. DNA-PK functions with XRCC4/DNA ligase IV to repair breaks during NHEJ, and works with Artemis to process DNA hairpin structures during VDJ recombination and during a subset of DNA DSB events (46, 50, 86). While the kinase activity of DNA-PKcs leads to phosphorylation of a large number of substrates in vitro as well as autophosphorylation of specific residues (reviewed in references 16 and 85), it is currently unclear how DNA-PKcs contributes to signaling in cells upon different types of damage.The adeno-associated virus (AAV) genome consists of a molecule of single-stranded DNA with inverted terminal repeats (ITRs) at both ends that form double-hairpin structures due to their palindromic sequences (reviewed in reference 52). The ITRs are important for replication and packaging of the viral genome and for integration into the host genome. Four viral Rep proteins (Rep78, Rep68, Rep52, and Rep40) are also required for replication and packaging of the AAV genome into virions assembled from the Cap proteins. Although the Rep and Cap genes are replaced in recombinant AAV vectors (rAAV) that retain only the ITRs flanking the gene of interest, these vectors can be replicated by providing Rep in trans (reviewed in reference 7). Productive AAV infection requires helper functions supplied by adenovirus (Ad) or other viruses such as herpes simplex virus (HSV) (reviewed in reference 27), together with components of the host cell DNA replication machinery (54, 55, 58). In the presence of helper viruses or minimal helper proteins from Ad or HSV, AAV replicates in the nucleus at centers where the viral DNA and Rep proteins accumulate (35, 76, 84, 89). Cellular and viral proteins involved in AAV replication, including replication protein A (RPA), Ad DNA-binding protein (DBP), and HSV ICP8, localize with Rep proteins at these viral centers (29, 33, 76).A number of published reports suggest associations between AAV and the cellular DNA damage machinery. For example, transduction by rAAV vectors is increased by genotoxic agents and DNA damaging treatments (1, 62, 91) although the mechanisms involved remain unclear. Additionally, the ATM kinase negatively regulates rAAV transduction (64, 92), and we have shown that the MRN complex poses a barrier to both rAAV transduction and wild-type AAV replication (11, 67). UV-inactivated AAV particles also appear to activate a DDR involving ATM and ATR kinases that perturbs cell cycle progression (39, 60, 88). It has been suggested that this response is provoked by the AAV ITRs (60) and that UV-treated particles mimic stalled replication forks in infected cells (39). In addition to AAV genome components, the viral Rep proteins have been observed to exhibit cytotoxicity and induce S-phase arrest (3, 65).The role of cellular repair proteins in AAV genome processing has also been explored by examining the molecular fate of rAAV vectors, which are converted into circular and concatemeric forms that persist episomally (18, 19, 66). Proteins shown to regulate circularization in cell culture include ATM and the MRN complex (14, 64), while in vivo experiments using mouse models have implicated ATM and DNA-PK in this process (14, 20, 72). Additionally, DNA-PKcs and Artemis have recently been shown to cleave the ITR hairpins of rAAV vectors in vivo in a tissue-dependent manner (36). Despite these studies, it is not clear how damage response factors function together and how they impact AAV transduction and replication in human cells.In this study we examined the cellular response to AAV replication in the context of Ad infection or helper proteins. We show that coinfection with AAV and Ad activates a DDR that is distinct from that seen during infection with Ad alone. The ATM and DNA-PKcs damage kinases are activated and signal to downstream substrates, but the response does not require the MRN complex and is primarily mediated by DNA-PKcs. Although expression of the large Rep proteins induced some DDR events, full signaling appeared to require AAV replication and was accompanied by accumulation of DNA-PK at viral replication compartments. Our results demonstrate that AAV replication induces a unique DNA damage signal transduction response and provides a model system for studying DNA-PK.  相似文献   

17.
Velichko  A. K.  Razin  S. V.  Kantidze  O. L. 《Molecular Biology》2021,55(2):182-192
Molecular Biology - Nucleoli, the largest subnuclear compartments, are formed around arrays of ribosomal gene repeats transcribed by RNA polymerase I. The primary function of nucleoli is ribosome...  相似文献   

18.
19.
The RecQ4 protein shows homology to both the S.cerevisiae DNA replication protein Sld2 and the DNA repair related RecQ helicases. Experimental data also suggest replication and repair functions for RecQ4, but the precise details of its involvement remain to be clarified.Here we show that depletion of DmRecQ4 by dsRNA interference in S2 cells causes defects consistent with a replication function for the protein. The cells show reduced proliferation associated with an S phase block, reduced BrdU incorporation, and an increase in cells with a subG1 DNA content. At the molecular level we observe reduced chromatin association of DNA polymerase-alpha and PCNA. We also observe increased chromatin association of phosphorylated H2AvD - consistent with the presence of DNA damage and increased apoptosis.Analysis of DmRecQ4 repair function suggests a direct role in NER, as the protein shows rapid but transient nuclear localisation after UV treatment. Re-localisation is not observed after etoposide or H2O2 treatment, indicating that the involvement of DmRecQ4 in repair is likely to be pathway specific.Deletion analysis of DmRecQ4 suggests that the SLD2 domain was essential, but not sufficient, for replication function. In addition a DmRecQ4 N-terminal deletion could efficiently re-localise on UV treatment, suggesting that the determinants for this response are contained in the C terminus of the protein. Finally several deletions show differential rescue of dsRNA generated replication and proliferation phenotypes. These will be useful for a molecular analysis of the specific role of DmRecQ4 in different cellular pathways.  相似文献   

20.
DNA is constantly damaged by endogenous and exogenous agents. The resulting DNA lesions have the potential to halt the progression of the replisome, possibly leading to replication fork collapse. Here, we examine the effect of a noncoding DNA lesion in either leading strand template or lagging strand template on the bacteriophage T4 replisome. A damaged base in the lagging strand template does not affect the progression of the replication fork. Instead, the stalled lagging strand polymerase recycles from the lesion and initiates the synthesis of a new Okazaki fragment upstream of the damaged base. In contrast, when the replisome encounters a blocking lesion in the leading strand template, the replication fork only travels approximately 1 kb beyond the point of the DNA lesion before complete replication fork collapse. The primosome and the lagging strand polymerase remain active during this period, and an Okazaki fragment is synthesized beyond the point of the leading strand lesion. There is no evidence for a new priming event on the leading strand template. Instead, the DNA structure that is produced by the stalled replication fork is a substrate for the DNA repair helicase UvsW. UvsW catalyzes the regression of a stalled replication fork into a “chicken-foot” structure that has been postulated to be an intermediate in an error-free lesion bypass pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号