首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signaling pathway of phosphatidylinositol 3-kinase (PI3K)/AKT, which is involved in cell survival, proliferation, and growth, has become a major focus in targeting cancer therapeutics. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) was previously identified as a gene induced by several anti-tumorigenic compounds including nonsteroidal anti-inflammatory drugs, peroxisome proliferator-activated receptor gamma ligands, and dietary compounds. NAG-1 has been shown to exhibit anti-tumorigenic and/or pro-apoptotic activities in vivo and in vitro. In this report, we showed a PI3K/AKT/glycogen synthase kinase-3beta (GSK-3beta) pathway regulates NAG-1 expression in human colorectal cancer cells as assessed by the inhibition of PI3K, AKT, and GSK-3beta. PI3K inhibition by LY294002 showed an increase in NAG-1 protein and mRNA expression, and 1l-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (AKT inhibitor) also induced NAG-1 expression. LY294002 caused increased apoptosis, cell cycle, and cell growth arrest in HCT-116 cells. Inhibition of GSK-3beta, which is negatively regulated by AKT, using AR-A014418 and lithium chloride completely abolished LY294002-induced NAG-1 expression as well as the NAG-1 promoter activity. Furthermore, the down-regulation of GSK-3 gene using small interference RNA resulted in a decline of the NAG-1 expression in the presence of LY294002. These data suggest that expression of NAG-1 is regulated by PI3K/AKT/GSK-3beta pathway in HCT-116 cells and may provide a further understanding of the important role of PI3K/AKT/GSK-3beta pathway in tumorigenesis.  相似文献   

2.
Signaling via the phosphoinositide 3-kinase (PI3K)/AKT pathway is crucial for the regulation of endothelial cell (EC) proliferation and survival, which involves the AKT-dependent phosphorylation of the DNA repair protein p21(Cip1) at Thr-145. Because p21(Cip1) is a short-lived protein with a high proteasomal degradation rate, we investigated the regulation of p21(Cip1) protein levels by PI3K/AKT-dependent signaling. The PI3K inhibitors Ly294002 and wortmannin reduced p21(Cip1) protein abundance in human umbilical vein EC. However, mutation of the AKT site Thr-145 into aspartate (T145D) did not increase its protein half-life. We therefore investigated whether a kinase downstream of AKT regulates p21(Cip1) protein levels. In various cell types, AKT phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). Upon serum stimulation of EC, GSK-3beta was phosphorylated at Ser-9. Site-directed mutagenesis revealed that GSK-3 in vitro phosphorylated p21(Cip1) specifically at Thr-57 within the Cdk binding domain. Overexpression of GSK-3beta decreased p21(Cip1) protein levels in EC, whereas the specific inhibition of GSK-3 with lithium chloride interfered with p21(Cip1) degradation and increased p21(Cip1) protein about 10-fold in EC and cardiac myocytes (30 mm, p < 0.001). These data indicate that GSK-3 triggers p21(Cip1) degradation. In contrast, stimulation of AKT increases p21(Cip1) via inhibitory phosphorylation of GSK-3.  相似文献   

3.
Gu D  Yu B  Zhao C  Ye W  Lv Q  Hua Z  Ma J  Zhang Y 《FEBS letters》2007,581(3):382-388
Pleiotrophin (PTN) plays diverse roles in cell growth and differentiation. In this investigation, we demonstrate that PTN plays a negative role in adipogensis and that glycogen synthase kinase 3beta (GSK-3beta) and beta-catenin are involved in the regulation of PTN-mediated preadipocyte differentiation. Knocking down the expression of PTN using siRNA resulted in an increase in phospho-GSK-3beta expression, and the accumulation of nuclear beta-catenin, which are critical downstream signaling proteins for both the PTN and Wnt signaling pathways. Our investigation suggests that there is a PTN/PI3K/AKT/GSK-3beta/beta-catenin signaling pathway, which cross-talks with the Wnt/Fz/GSK-3beta/beta-catenin pathway and negatively regulates adipogenesis.  相似文献   

4.
Yuan G  Wang C  Ma C  Chen N  Tian Q  Zhang T  Fu W 《PloS one》2012,7(3):e34004
The Wnt/β-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/β-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of β-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of β-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated β-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3β and β-catenin. DACT1 stabilizes β-catenin via DACT1-induced effects on GSK-3β and directly interacts with β-catenin proteins. The level of phosphorylated GSK-3β at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of β-catenin via increasing the level of phosphorylated GSK-3β at Ser9 to inhibit the activity of GSK-3β. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the β-catenin-dependent pathway.  相似文献   

5.
While there exists a wealth of information about genetic influences on gene expression, less is known about how inherited variation influences the expression and post-translational modifications of proteins, especially those involved in intracellular signaling. The PI3K/AKT/mTOR signaling pathway contains several such proteins that have been implicated in a number of diseases, including a variety of cancers and some psychiatric disorders. To assess whether the activation of this pathway is influenced by genetic factors, we measured phosphorylated and total levels of three key proteins in the pathway (AKT1, p70S6K, 4E-BP1) by ELISA in 122 lymphoblastoid cell lines from 14 families. Interestingly, the phenotypes with the highest proportion of genetic influence were the ratios of phosphorylated to total protein for two of the pathway members: AKT1 and p70S6K. Genomewide linkage analysis suggested several loci of interest for these phenotypes, including a linkage peak for the AKT1 phenotype that contained the AKT1 gene on chromosome 14. Linkage peaks for the phosphorylated:total protein ratios of AKT1 and p70S6K also overlapped on chromosome 3. We selected and genotyped candidate genes from under the linkage peaks, and several statistically significant associations were found. One polymorphism in HSP90AA1 was associated with the ratio of phosphorylated to total AKT1, and polymorphisms in RAF1 and GRM7 were associated with the ratio of phosphorylated to total p70S6K. These findings, representing the first genomewide search for variants influencing human protein phosphorylation, provide useful information about the PI3K/AKT/mTOR pathway and serve as a valuable proof of concept for studies integrating human genomics and proteomics.  相似文献   

6.
7.
The GSK-3 kinases, GSK-3α and GSK-3β, have a central role in regulating multiple cellular processes such as glycogen synthesis, insulin signaling, cell proliferation and apoptosis. GSK-3β is the most well studied, and was originally described for its role in regulating glycogen synthase. GSK-3β has been studied as a participant in the oncogenic process in a variety of cancers due to its intersection with the PTEN/PI3K/AKT and RAS/RAF/MEK/ERK pathways. Dysregulated signaling through the Notch family of receptors can also promote oncogenesis. Normal Notch receptor signaling regulates cell fate determination in stem cell pools. GSK-3β and Notch share similar targets such β-catenin and the WNT pathway. WNT and β-catenin are involved in several oncogenic processes including those of the colon. In addition, GSK-3β may directly regulate aspects of Notch signaling. This review describes how crosstalk between GSK-3β and Notch can promote oncogenesis, using colon cancer as the primary example.  相似文献   

8.
The mammalian cell cycle is regulated by the cyclin/cyclin-dependent kinase (CDK) phosphorylation of the retinoblastoma (pRB) family of proteins. Cyclin D1 with its CDK4/6 partners initiates the cell cycle and acts as the link between extracellular signals and the cell cycle machinery. Estradiol-17beta (E2) stimulates uterine epithelial cell proliferation, a process that is completely inhibited by pretreatment with progesterone (P4). Previously, we identified cyclin D1 localization as a key point of regulation in these cells with E2 causing its nuclear accumulation and P4 retaining it in the cytoplasm with the resultant inhibition of pRB phosphorylation. Here we show that E2 stimulates phosphoinositide 3-kinase to activate phosphokinase B/AKT to effect an inhibitory phosphorylation of glycogen synthase kinase (GSK-3beta). This pathway is suppressed by P4. Inhibition of the GSK-3beta activity in P4-treated uteri by the specific inhibitor, LiCl, reversed the nuclear accumulation of cyclin D1 and in doing so, caused pRB phosphorylation and the induction of downstream genes, proliferating cell nuclear antigen and Ki67. Conversely, inhibition of phosphoinositide 3 kinase by LY294002 or Wortmanin reversed the E2-induced GSK-3beta Ser9 inhibitory phosphorylation and blocked nuclear accumulation of cyclin D1. These data show the reciprocal actions of E2 and P4 on the phosphoinositide 3-kinase through to the GSK-3beta pathway that in turn regulates cyclin D1 localization and cell cycle progression. These data reveal a novel signaling pathway that links E2 and P4 action to growth factor-mediated signaling in the uterus.  相似文献   

9.
Ovarian cancer is the leading cause of death from gynecological malignancy for women. The amplification of the PI3K catalytic subunit (p110) and the lost function of PTEN are frequently detected in ovarian cancer cells. PI3K plays an important role in tumorigenesis. To specifically inhibit PI3K activity in ovarian cancer cells, we constructed small interfering RNA (siRNA) against p110. The expression of p110 siRNA significantly decreased cell migration, invasion, and proliferation compared to the siSCR control cells. The expression of p110 siRNA induced CDK inhibitor p27KIP1 levels, and decreased levels of cyclin D1, CDK4, and phosphorylated retinoblastoma protein. PI3K transmits the mytogenic signal through AKT. AKT has three isoforms in the cells: AKT1, AKT2 and AKT3. We found that inhibition of AKT1 is sufficient to affect cell migration, invasion, and proliferation. Expression of AKT1 siRNA had a similar effect as p110 siRNA in the cells. We showed the roles of specific PI3K and AKT isoforms in the cells, which are important to understanding the mechanism of PI3K/AKT signaling in ovarian cancer cells. Both p110 and AKT1 siRNA-expressing cells decreased the activation of p70S6K1. Inhibition of p70S6K1 activity by its siRNA also decreased cell migration, invasion, and proliferation associated with the induction of p27KIP1 levels, and with the inhibition of cell cycle-associated proteins including cyclin D1, CDK2, and phosphorylated retinoblastoma protein. This study demonstrates the important role of the PI3K/AKT/mTOR/p70S6K1 pathway in cell proliferation, migration, and invasion in ovarian cancer cells by using siRNA-mediated gene silencing as a reverse genetic method.  相似文献   

10.
The mortality rate of pancreatic cancer has close parallels to its incidence rate because of limited therapeutics and lack of effective prognosis. Despite various novel chemotherapeutics combinations, the 5-year survival rate is still under 5%. In the current study, we aimed to modulate the aberrantly activated PI3K/AKT pathway and epithelial-mesenchymal transition (EMT) signaling with the treatment of CDK4/6 inhibitor PD-0332991 (palbociclib) in Panc-1 and MiaPaCa-2 pancreatic cancer cells. It was found that PD-0332991 effectively reduced cell viability and proliferation dose-dependently within 24 hours. In addition, PD-0332991 induced cell cycle arrest at the G1 phase by downregulation of aberrant expression of CDK4/6 through the dephosphorylation of Rb in each cell lines. Although PD-0332991 treatment increased epithelial markers and decreased mesenchymal markers, the nuclear translocation of β-catenin was not prevented by PD-0332991 treatment, especially in MiaPaCa-2 cells. Effects of PD-0332991 on the regulation of PI3K/AKT signaling and its downstream targets such as GSK-3 were cell type-dependent. Although the activity of AKT was inhibited in both cell lines, the phosphorylation of GSK-3β at Ser9 increased only in Panc-1. In conclusion, PD-0332991 induced cell cycle arrest and reduced the cell viability of Panc-1 and MiaPaCa-2 cells. However, PD-0332991 differentially affects the regulation of the PI3K/AKT pathway and EMT process in cells due to its distinct influence on Rb and GSK-3/β-catenin signaling. Understanding the effect of PD-0332991 on the aberrantly activated signaling axis may put forward a new therapeutic strategy to reduce the cell viability and metastatic process of pancreatic cancer.  相似文献   

11.
Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into neuron-like cell, but the precise mechanisms controlling this process are unclear. We report here that LY294002, a small molecule inhibitor of PI3K/AKT signal pathway, can inhibit proliferation and promote neuronal differentiation of MSCs after MSCs incubated with LY294002 for 6 and 12 h. RT-PCR results indicated that mRNA expression of α5β1 integrin significantly increased in neuron-like cell from MSCs. Interestingly, neuron-like cells derived by this method adhere much more strongly than MSCs, which was related to the expression of α5β1 integrin and FAK phosphorylation. However, these effects could be attenuated by LiCL or GSK-3β-siRNA. Our results indicate that activation GSK-3β signaling may be involved in MSCs proliferation, differentiation, and adhesion. Furthermore, this study demonstrates that small molecule regulators of PI3K/AKT signaling may be valuable tools for stem cell research aimed at treatment of neurodegenerative disease.  相似文献   

12.
In recent decades, cancer has been one of the most important concerns of the human community, which affects human life from many different ways, such as breast, lung, colorectal, prostate, and other cancers. Colorectal cancer is one of the most commonly diagnosed cancers in the world that has recently been introduced as the third leading cause of cancer deaths in the world. microRNAs have a very crucial role in tumorgenesis and prevention of cancer, which plays a significant role with influencing various factors through different signaling pathways. Phosphoinositide 3 (PI3)-kinase/AKT is one of the most important signaling pathways involved in the control and growth of tumor in colorectal cancer, through important proteins of this pathway, such as PTEN and AKT, that they can perform specific influence on this process. Our effort in this study is to collect microRNAs that act as tumor suppressors and oncomirs in this cancer through PI3-kinase/AKT signaling pathway.  相似文献   

13.
14.
Fang J  Ding M  Yang L  Liu LZ  Jiang BH 《Cellular signalling》2007,19(12):2487-2497
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1 and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.  相似文献   

15.
We investigated the role of glycogen synthase kinase-3 (GSK-3), which is inactivated by AKT, for its role in the regulation of apoptosis. Upon IL-3 withdrawal, protein levels of MCL-1 decreased but were sustained by pharmacological inhibition of GSK-3, which prevented cytochrome c release and apoptosis. MCL-1 was phosphorylated by GSK-3 at a conserved GSK-3 phosphorylation site (S159). S159 phosphorylation of MCL-1 was induced by IL-3 withdrawal or PI3K inhibition and prevented by AKT or inhibition of GSK-3, and it led to increased ubiquitinylation and degradation of MCL-1. A phosphorylation-site mutant (MCL-1(S159A)), expressed in IL-3-dependent cells, showed enhanced stability upon IL-3 withdrawal and conferred increased protection from apoptosis compared to wild-type MCL-1. The results demonstrate that the control of MCL-1 stability by GSK-3 is an important mechanism for the regulation of apoptosis by growth factors, PI3K, and AKT.  相似文献   

16.
Loss of tuberin, the product of TSC2 gene, increases mammalian target of rapamycin (mTOR) signaling, promoting cell growth and tumor development. However, in cells expressing tuberin, it is not known how repression of mTOR signaling is relieved to activate this pathway in response to growth factors and how hamartin participates in this process. We show that hamartin colocalizes with hypophosphorylated tuberin at the membrane, where tuberin exerts its GTPase-activating protein (GAP) activity to repress Rheb signaling. In response to growth signals, tuberin is phosphorylated by AKT and translocates to the cytosol, relieving Rheb repression. Phosphorylation of tuberin at serines 939 and 981 does not alter its intrinsic GAP activity toward Rheb but partitions tuberin to the cytosol, where it is bound by 14-3-3 proteins. Thus, tuberin bound by 14-3-3 in response to AKT phosphorylation is sequestered away from its membrane-bound activation partner (hamartin) and its target GTPase (Rheb) to relieve the growth inhibitory effects of this tumor suppressor.  相似文献   

17.
《Cellular signalling》2014,26(12):2782-2792
Angiogenin (ANG), a member of RNase A superfamily, is the only angiogenic factor that possesses ribonucleolytic activity. Recent studies showed that the expression of ANG was elevated in various types of cancers. Accumulating evidence indicates that ANG plays an essential role in cancer progression by stimulating both cancer cell proliferation and tumor angiogenesis. Human ribonuclease inhibitor (RI), a cytoplasmic protein, is constructed almost entirely of leucine rich repeats (LRRs), which are present in a large family of proteins that are distinguished by their display of vast surface areas to foster protein–protein interactions. RI might be involved in unknown biological effects except inhibiting RNase A activity. The experiment demonstrated that RI also could suppress activity of angiogenin (ANG) through closely combining with it in vitro. PI3K/AKT/mTOR signaling pathway exerts a key role in cell growth, survival, proliferation, apoptosis and angiogenesis. We recently reported that up-regulating RI inhibited the growth and induced apoptosis of murine melanoma cells through repression of angiogenin and PI3K/AKT signaling pathway. However, ANG receptors have not yet been identified to date, its related signal transduction pathways are not fully clear and underlying interacting mechanisms between RI and ANG remain largely unknown. Therefore, we hypothesize that RI might combine with intracellular ANG to block its nuclear translocation and regulate PI3K/AKT/mTOR signaling pathway to inhibit biological functions of ANG. Here, we reported for the first time that ANG could interact with RI endogenously and exogenously by using co-immunoprecipitation (Co-IP) and GST pull-down. Furthermore, we observed the colocalization of ANG and RI in cells with immunofluorescence staining under laser confocal microscope. Moreover, through fluorescence resonance energy transfer (FRET) assay, we further confirmed that these two proteins have a physical interaction in living cells. Subsequently, we demonstrated that up-regulating ANG including ANG His37Ala mutant obviously decreased RI expression and activated phosphorylation of key downstream target molecules of PI3K/AKT/mTOR signaling pathway. Finally, up-regulating ANG led to the promotion of tumor angiogenesis, tumorigenesis and metastasis in vivo. Taken together, our data provided a novel mechanism of ANG in regulating PI3K/AKT/mTOR signaling pathway via RI, which suggested a new therapeutic target for cancer therapy.  相似文献   

18.
Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin.  相似文献   

19.
Regulation of cellular bioenergetics by PI3K/AKT signaling was examined in isogenic hepatocyte cell lines lacking the major inhibitor of PI3K/AKT signaling, PTEN (phosphatase and tensin homolog deleted on chromosome 10). PI3K/AKT signaling was manipulated using the activator (IGF-1) and the inhibitor (LY 294002) of the PI3K/AKT pathway. Activation of PI3K/AKT signaling resulted in an enhanced anaerobic glycolysis and mitochondrial respiration. AKT, when phosphorylated and activated, translocated to mitochondria and localized within the membrane structure of mitochondria, where it phosphorylated a number of mitochondrial-resident proteins including the subunits α and β of ATP synthase. Inhibition of GSK3β by either phosphorylation by AKT or lithium chloride resulted in activation of pyruvate dehydrogenase, i.e., a decrease in its phosphorylated form. AKT-dependent phosphorylation of ATP synthase subunits α and β resulted in an increased complex activity. AKT translocation to mitochondria was associated with an increased expression and activity of complex I. These data suggest that the mitochondrial signaling pathway AKT/GSK3β/PDH, AKT-dependent phosphorylation of ATP synthase, and upregulation of mitochondrial complex I expression and activity are involved in the control of mitochondrial bioenergetics by increasing substrate availability and regulating the mitochondrial catalytic/energy-transducing capacity.  相似文献   

20.
Gastric cancer (GC) is a common heterogeneous disease. The critical roles of microRNA-340 (miR-340) in the development and progression of GC were emphasized in accumulating studies. This study aims to examine the regulatory mechanism of miR-340 in GC cellular processes. Initially, microarray technology was used to identify differentially expressed genes and regulatory miRs in GC. After that, the potential role of miR-340 in GC was determined via ectopic expression, depletion, and reporter assay experiments. Expression of secreted phosphoprotein 1 (SPP1), miR-340, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and epithelial–mesenchymal transition (EMT)-related genes was measured. Moreover, to further explore the function of miR-340 in vivo and in vitro, proliferation, apoptosis, migration, invasion, and tumorigenic capacity were evaluated. SPP1 was a target gene of miR-340 which could then mediate the PI3K/AKT signaling pathway by targeting SPP1 in GC. Furthermore, miR-340 levels were reduced and SPP1 was enriched in GC tissues and cells, with the PI3K/AKT signaling pathway being activated. Inhibitory effects of upregulated miR-340 on SPP1 and the PI3K/AKT signaling pathway were confirmed in vivo and in vitro. Overexpression of miR-340 or the silencing of SPP1 inhibited GC cell proliferation, invasion, migration, and EMT process, but promoted apoptosis of GC cells. Typically, targeting of SPP1 by miR-340 may contribute to the inhibition of proliferation, migration, invasion, and EMT of GC cells via suppression of PI3K/AKT signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号