首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis.  相似文献   

2.
We investigated the bacterial gut microbiota from 32 colonies of wood-feeding termites, comprising four Microcerotermes species (Termitidae) and four Reticulitermes species (Rhinotermitidae), using terminal restriction fragment length polymorphism analysis and clonal analysis of 16S rRNA. The obtained molecular community profiles were compared statistically between individuals, colonies, locations, and species of termites. Both analyses revealed that the bacterial community structure was remarkably similar within each termite genus, with small but significant differences between sampling sites and/or termite species. In contrast, considerable differences were found between the two termite genera. Only one bacterial phylotype (defined with 97% sequence identity) was shared between the two termite genera, while 18% and 50% of the phylotypes were shared between two congeneric species in the genera Microcerotermes and Reticulitermes, respectively. Nevertheless, a phylogenetic analysis of 228 phylotypes from Microcerotermes spp. and 367 phylotypes from Reticulitermes spp. with other termite gut clones available in public databases demonstrated the monophyly of many phylotypes from distantly related termites. The monophyletic “termite clusters” comprised of phylotypes from more than one termite species were distributed among 15 bacterial phyla, including the novel candidate phyla TG2 and TG3. These termite clusters accounted for 95% of the 960 clones analyzed in this study. Moreover, the clusters in 12 phyla comprised phylotypes from more than one termite (sub)family, accounting for 75% of the analyzed clones. Our results suggest that the majority of gut bacteria are not allochthonous but are specific symbionts that have coevolved with termites and that their community structure is basically consistent within a genus of termites.  相似文献   

3.
This article documents, and seeks to explain, the geographical patterning in ethnic group distributions. Some areas, chiefly equatorial regions and areas of high habitat diversity, are crowded with a large number of named groups. Elsewhere, people over a large area consider themselves members of a single group. Using three new codes for the Standard Cross-Cultural Sample (ethnic diversity, habitat diversity, and rainfall variation), I show that regions with relatively few ethnic groups (low ethnic diversity) have unpredictable and highly variable climates and low pathogen loads. In most areas there was no relationship between ethnic diversity and ecosystem productivity, and there was little or none with the chief determinants of productivity, mean annual rainfall and temperature. Habitat diversity was also associated with ethnic diversity, particularly among nonstratified societies. Habitat diversity is correlated with degree of topographic relief, but the effect of habitat diversity on ethnic diversity is larger than, and independent of, the effect of topography. [ ethnic diversity, ecological anthropology, spatial organization, cross-cultural research ]  相似文献   

4.
Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting.Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees.Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage.The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may be undergoing dynamic succession.  相似文献   

5.
Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity.  相似文献   

6.
7.
Free-living amoebae are frequent hosts for bacterial endosymbionts. In this study, the symbionts of eight novel environmental Acanthamoeba strains isolated from different locations worldwide were characterized. Phylogenetic analysis revealed that they were related to one of four evolutionary lineages of amoeba symbionts recognized previously. This study provides evidence for the existence of only a small number of phylogenetically well-separated groups of obligate intracellular endosymbionts of acanthamoebae with global distribution.  相似文献   

8.
The relationship between microorganisms and birds has received increased attention recently. The state of knowledge of this relationship, however, is based largely on examination of sick or dead birds, and knowledge of the prevalence and community structure and function of microbes in healthy wild populations is limited. Using carbon substrate utilization profiles, microbial communities were examined in 91 cloacal samples from 14 species within apparently healthy summer and winter passerine populations. Within each season, gradient lengths and eigenvalues from ordination analyses suggested that many samples differed in their carbon substrate utilization and several had very different communities. Cloacal microbe carbon utilization profiles were distinguishable among host species, season-specific diet, and study site in the ordination analyses. However, these patterns were only observed for the analysis of the summer data set. The results of this study support the idea that the avian host’s microbial community, relative to carbon substrate utilization, is related to host diet. Previously, this pattern had only been reported for potential pathogens isolated from the avian cloaca. Study site–specific patterns in the ordination analysis suggest that environmental conditions at a particular study site may influence cloacal microbial communities in birds. Results of this study indicate that examination of community-level physiological profiles may be a useful technique for distinguishing among avian cloacal samples, similar to that already established for discriminating aqueous and soil samples. Future studies that correlate microbe physiological profiles to condition-based indices of avian hosts may be most useful for eventually using the profile as an indicator of environmental conditions experienced by hosts.  相似文献   

9.
The cellular slime mold Dictyostelium discoideum grows in the soil as a population of independent, uninucleate amoebae. Upon entrance to the stationary phase, the amoebae collect in multicellular aggregates to form organized fruiting bodies composed of spores and stalk cells. Depending upon environmental conditions, the developing aggregate either constructs the fruiting body at the site of aggregation or transforms into a structure that can migrate to a more favorable location. Environmental conditions that favor migration are (i) the accumulation of metabolite(s) produced by the aggregate and (ii) a low ionic strength in the substratum. Conditions that prevent migration or that stop a migrating slug are (i) the presence of buffer and (ii) illumination by overhead light.  相似文献   

10.
Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.  相似文献   

11.

Background

Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama.

Methodology/Principal Findings

R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site.

Conclusions/Significance

In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially by changing host community structure to favor hosts that are short-lived with high reproductive rates. Study results apply to potential environmental management strategies for Chagas disease.  相似文献   

12.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

13.
Gall-inducing insects seem to have a diversity pattern distinct from the usual latitudinal decrease in species, with more species occurring in xeric environments instead. Many questions regarding galler diversity over geographical scales remain unanswered: for example, little is known about beta diversity, and the role super host plants play in local/regional richness. Our aim was to compare galling insect and host plant diversity in different biogeographical regions, but under similar environmental conditions. We sampled short stature coastal woodlands on sandy soils of the Atlantic coast in both USA (Florida) and Brazil (Rio Grande do Sul, RS), between 25° and 30° latitude. Little-used 200-m long trails were searched during 90 min for galls; there were four trails in USA and five in Brazil. Gall functional traits (galled plant organ, gall shape and colour) proportions were not different between Florida and RS. Local galling and host plant species richness also did not differ, and neither did regional galling diversity. The beta diversity pattern, however, was distinct: sites in Florida have more similar galling faunas than sites in RS. Common diversity patterns indicate common environmental biotic (plant diversity, vegetation structure) and abiotic (climate, soil) factors might be contributing to these similar responses. As Brazilian sites are in the Atlantic forest hotspot, a high galling insect beta diversity might be caused by a higher heterogeneity at larger scales—sample-based rarefaction curves were ascending for Brazil, but not for USA. Myrtaceans were super hosts in Brazil, but not in Florida, where oaks take up this role.  相似文献   

14.
A complex wide‐range study on the haemoproteid parasites of chelonians was carried out for the first time. Altogether, 811 samples from four tortoise species from an extensive area between western Morocco and eastern Afghanistan and between Romania and southern Syria were studied by a combination of microscopic and molecular‐genetic methods. Altogether 160 Haemoproteus‐positive samples were gathered in the area between central Anatolia and eastern Afghanistan. According to variability in the cytochrome b gene, two monophyletic evolutionary lineages were distinguished; by means of microscopic analysis it was revealed that they corresponded to two previously described species—Haemoproteus anatolicum and Haemoproteus caucasica. Their distribution areas overlap only in a narrow strip along the Zagros Mts. range in Iran. This fact suggests the involvement of two different vector species with separated distribution. Nevertheless, no vectors were confirmed. According to phylogenetic analyses, H. caucasica represented a sister group to H. anatolicum, and both of them were most closely related to H. pacayae and H. peltocephali, described from South American river turtles. Four unique haplotypes were revealed in the population of H. caucasica, compared with seven haplotypes in H. anatolicum. Furthermore, H. caucasica was detected in two tortoise species, Testudo graeca and Testudo horsfieldii, providing evidence that Haemoproteus is not strictly host‐specific to the tortoise host species.  相似文献   

15.
The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected.  相似文献   

16.
Many arthropods with restricted diets rely on symbiotic associations for full nutrition and fecundity. Tsetse flies (Diptera: Glossinidae) harbor three symbiotic organisms in addition to the parasitic African trypanosomes they transmit. Two of these microorganisms reside in different gut cells, while the third organism is harbored in reproductive tissues and belongs to the genus Wolbachia. The primary symbiont (genus Wigglesworthia glossinidia) lives in differentiated epithelial cells (bacteriocytes) which form an organ (bacteriome) in the anterior gut, while the secondary (S) symbionts are present in midgut cells. Here we have characterized the phylogeny of Wigglesworthia based on their 16S rDNA sequence analysis from eight species representing the three subgenera of Glossina: Austenina (=fusca group), Nemorhina (=palpalis group), and Glossina (=morsitans group). Independently, the ribosomal DNA internal transcribed spacer-2 (ITS-2) regions from these species were analyzed. The analysis of Wigglesworthia indicated that they form a distinct lineage in the γ subdivision of Proteobacteria and display concordance with their host insect species. The trees generated by parsimony confirmed the monophyletic taxonomic placement of Glossina, where fusca group species formed the deepest branch followed by morsitans and palpalis groups, respectively. The placement of the species Glossina austeni by both the traditional morphological and biochemical criteria has been controversial. Results presented here, based on both the ITS-2 and the symbiont 16S rDNA sequence analysis, suggest that Glossina austeni should be placed into a separate fourth subgenus, Machadomyia, which forms a sister-group relationship with the morsitans group species. Received: 17 March 1998 / Accepted: 1 May 1998  相似文献   

17.
Little is known about the nature of the rumen epithelial adherent (epimural) microbiome in cattle fed different diets. Using denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and pyrosequencing of the V3 hypervariable coding region of 16S rRNA, epimural bacterial communities of 8 cattle were profiled during the transition from a forage to a high-concentrate diet, during acidosis, and after recovery. A total of 153,621 high-quality gene sequences were obtained, with populations exhibiting less taxonomic variability among individuals than across diets. The bacterial community composition exhibited clustering (P < 0.03) by diet, with only 14 genera, representing >1% of the rumen epimural population, differing (P ≤ 0.05) among diets. During acidosis, levels of Atopobium, Desulfocurvus, Fervidicola, Lactobacillus, and Olsenella increased, while during the recovery, Desulfocurvus, Lactobacillus, and Olsenella reverted to levels similar to those with the high-grain diet and Sharpea and Succinivibrio reverted to levels similar to those with the forage diet. The relative abundances of bacterial populations changed during diet transition for all qPCR targets except Streptococcus spp. Less than 5% of total operational taxonomic units (OTUs) identified exhibited significant variability across diets. Based on DGGE, the community structures of epithelial populations differed (P ≤ 0.10); segregation was most prominent for the mixed forage diet versus the grain, acidotic challenge, and recovery diets. Atopobium, cc142, Lactobacillus, Olsenella, RC39, Sharpea, Solobacterium, Succiniclasticum, and Syntrophococcus were particularly prevalent during acidosis. Determining the metabolic roles of these key genera in the rumens of cattle fed high-grain diets could define a clinical microbial profile associated with ruminal acidosis.  相似文献   

18.
Bluefish, Pomatomus saltatrix, are recreationally valuable finfish along the Atlantic seaboard and in the Chesapeake Bay. Diet and habitat use patterns for bluefish life history intervals in Chesapeake Bay estuaries are poorly described although it is widely acknowledged that this apex piscivorous species relies on estuarine habitat for feeding and nursery grounds after oceanic spawning and inshore migration of larvae. Bluefish diet, distribution, and abundance patterns were examined in relation to oyster reef, oyster bar, and sand bottom habitat in the Piankatank River, Virginia. Bluefish from all sites were predominantly piscivorous and were more abundant at reef sites than non-reef sites. Bluefish caught in association with the oyster reef consumed a wider diversity of prey items than fish from other sites; diet diversity may contribute to bluefish success during periods when small pelagic food fish abundance is reduced. Bluefish estuarine habitat use is positively correlated with the presence of oyster shell habitat and the complex trophic communities centering on oyster reefs.  相似文献   

19.
The Atacama Desert, one of the driest deserts in the world, represents a unique extreme environmental ecosystem to explore the bacterial diversity as it is considered to be at the dry limit for life. A 16S rRNA gene (spanning the hyper variable V3 region) library was constructed from an alkaline sample of unvegetated soil at the hyperarid margin in the Atacama Desert. A total of 244 clone sequences were used for MOTHUR analysis, which revealed 20 unique phylotypes or operational taxonomic units (OTUs). V3 region amplicons of the 16S rRNA were suitable for distinguishing the bacterial community to the genus and specie level. We found that all OTUs were affiliated with taxa representative of the Firmicutes phylum. The extremely high abundance of Firmicutes indicated that most bacteria in the soil were spore-forming survivors. In this study we detected a narrower diversity as compared to other ecological studies performed in other areas of the Atacama Desert. The reported genera were Oceanobacillus (representing the 69.5 % of the clones sequenced), Bacillus, Thalassobacillus and Virgibacillus. The present work shows physical and chemical parameters have a prominent impact on the microbial community structure. It constitutes an example of the communities adapted to live in extreme conditions caused by dryness and metal concentrations .

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0539-3) contains supplementary material, which is available to authorized users.  相似文献   

20.
The newly identified lipases of 67 bacterial strains, primarily Bacillus and Pseudomonas, from the ARS Culture Collection have been characterized on the basis of their positional specificity for triglycerides (triolein). Lipase was produced by growing the cultures in tryptone–glucose–yeast extract medium for 24 h at 30°C before addition of triglyceride. The lipase was allowed to act on the triglyceride for 3 days before analysis by thin-layer chromatography. Of the bacterial lipases tested, 55 displayed random specificity, 9 were 1,3-specific, and 3 showed no apparent lipase activity under these conditions. Received: 25 July 2001 / Accepted: 27 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号