首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients’ sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.  相似文献   

2.
3.
Campylobacter species are important enteric pathogens causing disease in humans and animals. There is a lack of a good immunological test that can be used routinely to separate Campylobacter jejuni from other Campylobacter species. We produced monoclonal antibodies (MAbs) directed against the major outer membrane protein (MOMP) of C. jejuni using recombinant MOMP as the antigen. One MAb, designated MAb5C4 and of the immunoglobulin G1 isotype, was found to be potentially specific for C. jejuni. Dot blots demonstrated that MAb5C4 reacted with all 29 isolates of C. jejuni tested but did not react with 2 C. jejuni isolates, 26 other Campylobacter spp. isolates, and 19 non-Campylobacter isolates. Western blotting showed that MAb5C4 bound to a single protein band approximately 43 kDa in size, corresponding to the expected size of C. jejuni MOMP. The detection limit of MAb5C4 in a dot blot assay was determined to be about 5 × 103 bacteria. The epitope on the MOMP was mapped to a region six amino acids in length with the sequence 216GGQFNP221, which is 97% conserved among C. jejuni strains but divergent in other Campylobacter spp.; a GenBank search indicated that 95% of C. jejuni isolates will be able to be detected from non-Campylobacter spp. based on the highly specific and conserved region of the GGQFNP polypeptide. The epitope is predicted to be located in a region that is exposed to the periplasm. MAb5C4 is a potentially specific and sensitive MAb that can be used for the specific detection and identification of C. jejuni.  相似文献   

4.
5.
Persistent alphavirus infections in synovial and neural tissues are believed to be associated with chronic arthritis and encephalitis, respectively, and represent likely targets for CD8+ αβ cytotoxic T lymphocytes (CTL). Here we show that the capsid protein is a dominant target for alphavirus-specific CTL in BALB/c mice and that capsid-specific CTL from these mice recognize an H-2Kd restricted epitope, QYSGGRFTI. This epitope lies in the highly conserved region of the capsid protein, and QYSGGRFTI-specific CTL were cross reactive across a range of Old World alphaviruses. In vivo the acute primary viraemia of these highly cytopathic viruses was unaffected by QYSGGRFTI-specific CTL. However, in vitro these CTL were able to completely clear virus from macrophages persistently and productively infected with the arthrogenic alphavirus Ross River virus.  相似文献   

6.
T cell cross-reactivity between different strains of the same virus, between different members of the same virus group, and even between unrelated viruses is a common occurrence. We questioned here how an intervening infection with a virus containing a sub-dominant cross-reactive T cell epitope would affect protective immunity to a previously encountered virus. Pichinde virus (PV) and lymphocytic choriomeningitis virus (LCMV) encode subdominant cross-reactive NP205–212 CD8 T cell epitopes sharing 6 of 8 amino acids, differing only in the MHC anchoring regions. These pMHC epitopes induce cross-reactive but non-identical T cell receptor (TCR) repertoires, and structural studies showed that the differing anchoring amino acids altered the conformation of the MHC landscape presented to the TCR. PV-immune mice receiving an intervening infection with wild type but not NP205-mutant LCMV developed severe immunopathology in the form of acute fatty necrosis on re-challenge with PV, and this pathology could be predicted by the ratio of NP205-specific to the normally immunodominant PV NP38–45 -specific T cells. Thus, cross-reactive epitopes can exert pathogenic properties that compromise protective immunity by impairing more protective T cell responses.  相似文献   

7.
Seven antigenic proteins of Edwardsiella tarda were identified by using a rabbit polyclonal antiserum. Four of these proteins also reacted with a Japanese flounder antiserum. The amino acid sequences had identity to lipoproteins, periplasmic proteins, and exported and secreted proteins with roles in transport of metabolites across the cell membrane, stress response, and motility. These genes and their products are useful for developing DNA or recombinant subunit vaccines to control edwardsiellosis.  相似文献   

8.
9.
Andrianov  A. M. 《Molecular Biology》2002,36(4):567-574
NMR data and the previously developed theoretical method were used to determine the three-dimensional structure of the immunodominant epitope (IDE) of the HIVThailand protein gp120. The best energy IDE conformers consistent with the theoretical and experimental data were calculated, and their ensemble was shown to give rise to the main chain folds found earlier in examining the HIVMN IDE structure. The gp120 IDE is supposed to behave as a metastable oligopeptide that, depending on the microenvironment, largely assumes one of the conformations from the ensemble. The results are discussed in the light of literature data on HIV-1 IDE structure.  相似文献   

10.
CD8+ T-cells specific for MART-1-(26–35), a dominant melanoma epitope restricted by human leukocyte antigen (HLA)-A*0201, are exceptionally common in the naive T-cell repertoire. Remarkably, the TRAV12-2 gene is used to encode the T-cell receptor α (TCRα) chain in >87% of these T-cells. Here, the molecular basis for this genetic bias is revealed from the structural and thermodynamic properties of an archetypal TRAV12-2-encoded TCR complexed to the clinically relevant heteroclitic peptide, ELAGIGILTV, bound to HLA-A*0201 (A2-ELA). Unusually, the TRAV12-2 germ line-encoded regions of the TCR dominate the major atomic contacts with the peptide at the TCR/A2-ELA interface. This “innate” pattern of antigen recognition probably explains the unique characteristics and extraordinary frequencies of CD8+ T-cell responses to this epitope.Malignant melanoma is responsible for 75% of all skin cancer-related deaths worldwide, and the global incidence is rising. The MART-1 (1) protein, also known as Melan-A (2), is expressed by virtually all fresh melanoma tumor specimens and elicits natural CD8+ T-cell responses (3, 4) that can lead to spontaneous disease regression (reviewed in Ref. 5). Consequently, CD8+ T-cell responses directed against the MART-1 protein have been investigated extensively (reviewed in Refs. 2, 6, and 7), and heteroclitic forms of the dominant MART-1-(26–35) peptide epitope (8, 9), which is restricted by human leukocyte antigen (HLA)-A*0201, are currently being used in a number of clinical trials (1012). In recent developments, adoptive T-cell therapy directed against the MART-1 protein has been used to mediate cancer regression in ∼50% of late stage melanoma patients (13). However, these approaches have not proved to be universally effective, and there remains considerable scope for improvement. In order to design more effective immune-based therapies against the MART-1 protein, it is essential to understand the precise molecular rules that govern the interaction between T-cell receptors (TCRs)6 and the HLA-A*0201·MART-1-(26–35) complex. Previous structural studies of human TCR/peptide major histocompatibility complex (pMHC) interactions (1416) indicate that specific regions of the TCR have different roles during antigen engagement; thus, the germ line-encoded complementarity-determining region 1 and 2 (CDR1 and -2) loops contact mainly the conserved helical region of the MHC surface, and the more variable somatically rearranged CDR3 loops contact mainly the antigenic peptide. Dissecting the nature of these contacts, which have been shown to be highly variable for individual TCR/pMHC interactions (1719), is an important step toward understanding the principles of antigen recognition and for the development of improved T-cell vaccines (20). However, the current data base of human TCR·pMHC complexes reported in the literature is limited (∼16), compared with >100 antibody-antigen structures. This has made it difficult to ascertain whether there are conserved binding modes for TCR/pMHC interactions dictated by a number of specific contacts or whether there are potentially unlimited numbers of TCR docking orientations dependent on the nature of individual recognition events. Furthermore, there are no examples to date of human TCR·pMHC class I structures in which the bound peptide is a decamer; this represents a substantial deficiency in our current knowledge, given the preponderance with which decamer peptides are processed, presented, and recognized. The low number of TCR·pMHC complex structures solved to date reflects technical difficulties inherent in the production of soluble TCR and pMHC molecules that retain stability and challenges related to the crystallization of complexes with relatively low binding affinities (KD = 0.1–500 μm) (21, 22). In general, TCRs specific for tumor-derived epitopes bind in the weaker range of TCR/pMHC affinities (21). This obstacle to the generation of high quality co-complex crystals is underscored by the fact that only one other tumor-specific human TCR·pMHCI complex structure has been documented previously (23).In this study, we expressed a soluble TCR (MEL5) specific for ELAGIGILTV, the common MART-1-(26–35) heteroclitic peptide, complexed to HLA-A*0201 (A2-ELA). Notably, HLA-A*0201 is the most common HLA allele in the human population (24). The CDR1 and CDR2 loops of this TCR are encoded by the TRAV12-2 and TRBV30 genes (International Immunogenetics (IMGT) nomenclature). Interestingly, the TRAV12-2 gene is expressed in the vast majority of CD8+ T-cell populations specific for HLA-A*0201·MART-1-(26–35) across multiple individuals (25, 26). To resolve the enigma of the dominant TRAV12-2 gene and determine the molecular characteristics that govern CD8+ T-cell recognition of the HLA-A*0201·MART-1-(26–35) antigen, we performed a biophysical, thermodynamic, and structural analysis of MEL5 TCR binding to A2-ELA. The data provide a molecular basis for biased TCR gene product selection in the CD8+ T-cell response to HLA-A*0201·MART-1-(26–35) and indicate that pMHC antigens can be subject to “innate-like” binding modes within adaptive immune responses.  相似文献   

11.

Background

Ever since its discovery the mycobacterial proline-proline-glutamic acid (PPE) family of proteins has generated a huge amount of interest. Understanding the role of these proteins in the pathogenesis of Mycobacterium tuberculosis (Mtb) is important. We have demonstrated earlier that the PPE18 protein of Mtb induces IL-10 production in macrophages with subsequent downregulation of pro-inflammatory cytokines like IL-12 and TNF-α and favors a T-helper (Th) 2-type of immune response.

Methodology/Principal Findings

Using a ppe18 genetic knock-out Mtb strain, we have now carried out infection studies in mice to understand the role of PPE18 in Mtb virulence. The studies reveal that lack of PPE18 leads to attenuation of Mtb in vivo. Mice infected with the ppe18 deleted strain have reduced infection burden in lung, liver and spleen and have better survival rates compared to mice infected with the wild-type Mtb strain.

Conclusions/Significance

Taken together our data suggest that PPE18 could be a crucial virulence factor for intracellular survival of Mtb.  相似文献   

12.
Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (> 326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.  相似文献   

13.
Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2- year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identified T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. We emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery.  相似文献   

14.
Noroviruses are major pathogens associated with acute gastroenteritis. They are diverse viruses, with at least six genogroups (GI-GVI) and multiple genotypes defined by differences in the major capsid protein, VP1. This diversity has challenged the development of broadly cross-reactive vaccines as well as efficient detection methods. Here, we report the characterization of a broadly cross-reactive monoclonal antibody (MAb) raised against the capsid protein of a GII.3 norovirus strain. The MAb reacted with VLPs and denatured VP1 protein from GI, GII, GIV and GV noroviruses, and mapped to a linear epitope located in the inner shell domain. An alignment of all available VP1 sequences showed that the putative epitope (residues 52–56) is highly conserved across the genus Norovirus. This broadly cross-reactive MAb thus constitutes a valuable reagent for the diagnosis and study of these diverse viruses.  相似文献   

15.
Human antibody recognition of Chlamydia trachomatis plasmid-encoded Pgp3 protein is dependent on the native conformation of Pgp3. The structural basis for the conformation dependence and the function of Pgp3 remain unknown. Here, we report that Pgp3 trimerization is required for the recognition of Pgp3 by human antibodies. In a native polyacrylamide gel, Pgp3 purified from a bacterial expression system migrated as stable trimers that were dissociated into monomers only by treatment with urea or sodium dodecyl sulfate (SDS) but not nonionic detergents. Human antibodies recognized trimeric but not monomeric Pgp3, suggesting that Pgp3 is presented to the human immune system as trimers during C. trachomatis infection. The endogenous Pgp3 secreted into the chlamydial outer membrane complex or host cell cytosol is always trimerized. Intact Pgp3 trimers were eluted from the outer membrane complex by a combination of nonionic detergents with reducing agents but not by the presence of either alone. These observations have provided important information for further understanding the role of Pgp3 in chlamydial pathogenesis and potentially optimizing Pgp3 as a subunit vaccine candidate antigen.Chlamydia trachomatis consists of multiple serovars and causes various human diseases. Serovars A to C primarily infect ocular epithelial cells, potentially leading to blinding trachoma (23, 42). Serovars D to K mainly target urogenital epithelial cells (39) whereas serovars L1 to L3 can invade lymphatic tissue, potentially resulting in systematic infection (40). Despite the differences in tissue tropism, all C. trachomatis organisms share a conserved biphasic growth cycle that has to be completed in a cytoplasmic vacuole called an inclusion (21, 46). Chlamydial infection starts with the entry of an infectious elementary body (EB) into an epithelial cell via pathogen-induced endocytosis (8, 19). The endocytosed EB differentiates to a noninfectious but metabolically active reticulate body (RB). After replication, the progeny RBs differentiate to EBs that exit the infected cells to invade adjacent cells (25). The C. trachomatis organisms also share a highly conserved cryptic plasmid that encodes 8 open reading frames (ORFs) designated pORF 1 to 8 (28, 35, 43).Urogenital tract infection with C. trachomatis is a leading cause of sexually transmitted diseases worldwide (11) and, if left untreated, can lead to severe complications such as pelvic inflammatory diseases, ectopic pregnancy, and infertility (15). Due to the lack of symptoms exhibited by individuals infected with C. trachomatis, it is not possible to effectively control C. trachomatis infection with antibiotics. Prophylactic vaccines may be among the most effective approaches for preventing C. trachomatis-induced pathologies (34). However, the pathogenic mechanisms of C. trachomatis remain unclear and there is no licensed C. trachomatis vaccine, probably due to limited knowledge of the roles of individual C. trachomatis antigens in pathogenesis and protective immunity. The cryptic plasmid has been considered a virulence factor of C. trachomatis, because plasmid-free variants have been found to be less invasive and to cause pathologies of lesser severity in mouse upper genital tract tissues (7, 32). However, the roles of the plasmid-encoded or regulated proteins in either chlamydial pathogenesis or protective immunity remain largely unknown. Pgp3, one of the plasmid-encoded proteins, was found to be recognized by human antibodies in enzyme-linked immunosorbent assays (ELISAs) but not in Western blot assays (9). We further confirmed that Pgp3 was an immunodominant antigen in woman urogenitally infected with C. trachomatis and that the human antibody recognition of Pgp3 was dependent on the native conformation of Pgp3 (30). We also observed that among the 8 ORFs encoded by the cryptic plasmid, only Pgp3 was secreted into the cytosol of the infected cells (28). Furthermore, various groups demonstrated that immunization with pgp3-encoding plasmid DNA induced protective immunity in mice (16, 29). However, the molecular basis for the conformation dependence of human antibody recognition of Pgp3 remains uncharacterized and the function of Pgp3 is unknown. Here, we present evidence that Pgp3 forms stable trimers that are responsible for the native conformation-dependent recognition of Pgp3 by human antibodies. The current study has provided important information for further understanding the roles of Pgp3 in C. trachomatis pathogenesis and protective immunity.  相似文献   

16.
International Journal of Peptide Research and Therapeutics - Campylobacter jejuni is a spiral-shaped Gram-negative and microaerophilic bacteria that causes bacterial diarrhea worldwide. Due to its...  相似文献   

17.
Treponema denticola, a gram-negative and anaerobic spirochete, is associated with advancing severity of chronic periodontitis. In this study, we confirmed that two major antigenic proteinswere Msp and TmpC, and examined their physiological and pathological roles using gene-deletion mutants. Msp formed a large complex that localized to the outer membrane, while TmpC existed as a monomer and largely localized to the inner membrane. However, TmpC was also detected in the outer membrane fraction, but its cell-surface exposure was not detected. Msp defects increased cell-surface hydrophobicity and secretion of TNF-α from macrophage-like cells, whereas TmpC defects decreased autoagglutination and chymotrypsin-like protease activities. Both mutants adhered to gingival epithelial cells similarly to the wild-type and showed slightly decreased motility. In addition, in Msp-defective mutants, the TDE1072 protein, which is a major membrane protein, was abolished; therefore, phenotypic changes in the mutant can be, at least in part, attributed to the loss of the TDE1072 protein. Thus, the major antigenic proteins, Msp and TmpC, have significant and diverse impacts on the characteristics of T. denticola, especially cell surface properties.  相似文献   

18.
初步分析植原体免疫膜蛋白的结构,以Imp构建诱饵质粒,为研究植原体与寄主互作的分子机理,探讨植原体传播、侵染及在寄主内的运输方式奠定基础。根据本实验室获得的花生丛枝植原体免疫膜蛋白基因序列设计特异性引物Imp-F/Imp-R,通过PCR扩增获得花生丛枝植原体免疫膜蛋白基因,大小519 bp,编码蛋白含有172个氨基酸残基,与SPWB膜蛋白的核苷酸差异一个碱基,氨基酸序列相同。另外与WBDL膜蛋白的核苷酸和氨基酸序列同源性分别为79.8%和70.2%。对其进行系统发育树分析;初步分析imp基因编码蛋白的跨膜区和疏水区。分析结果表明:花生丛枝植原体免疫膜蛋白C端有一跨膜锚定区,N端主要为膜内亲水区,没有前导信号序列。预测花生丛枝植原体免疫膜蛋白是一类C端跨膜的植原体免疫膜蛋白。将imp基因克隆到带有λcI基因的pBT质粒上,构建诱饵载体pBT-Imp,并通过IPTG诱导表达,western blot检测和自激活检验对其进行检测。结果显示:所构建的诱饵载体pBT-Imp可用于细菌双杂交的进一步实验。  相似文献   

19.
重组鹦鹉热衣原体主要外膜蛋白的抗原性研究   总被引:3,自引:0,他引:3  
构建了鹦鹉热衣原体主要外膜蛋白的原核表达载体,并对其进行了诱导表达,经过纯化,复性,获得了重组蛋白。用Westen-blotting和胶体金方法检测,此蛋白具有衣原体的免疫原性。经兔免疫接种实验,获得了多抗血清,用ELISA方法检测,其抗体滴度为1:2000。  相似文献   

20.
目的:筛选腺病毒55型(Ad55)抗原表位,为研制腺病毒免疫诊断试剂提供基础。方法:采用生物信息学方法预测Ad55六邻体、纤突的B细胞抗原表位;利用大肠杆菌优势密码子获得相应基因,插入载体pBVIL-1克隆表达后获得重组Ad55表位抗原;用临床疑似腺病毒呼吸道感染患者血清对重组Ad55表位抗原活性进行检测,用ROC曲线分析重组Ad55抗原的诊断意义;采用ClustalX软件进行多序列比较。结果:Ad55六邻体含有6个主要抗原表位,纤突含有2个主要抗原表位;采用退火延伸法获得上述8种表位基因,片段长度为90~180 bp;获得上述8种重组基因工程抗原,相对分子质量为18×103~21×103;血清学检测的ROC曲线分析显示,270~320、410~460和135~165氨基酸残基抗原表位的AUC面积超过0.75,具有一定的诊断意义(P0.05);序列比较结果显示,上述3种抗原表位与腺病毒11型序列高度同源,与3型存在较大差异。结论:获得了3个Ad55主要抗原,对研制通用性呼吸道传播腺病毒免疫诊断试剂具有一定的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号