首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness.  相似文献   

2.
The majority of studies investigating the effects of landscape composition and configuration on bee populations have been conducted in regions of intensive agricultural production, ignoring regions which are dominated by seminatural habitats, such as the islands of the Aegean Archipelago. In addition, research so far has focused on the landscape impacts on bees sampled in cropped fields while the landscape effects on bees inhabiting seminatural habitats are understudied. Here, we investigate the impact of the landscape on wild bee assemblages in 66 phryganic (low scrubland) communities on 8 Aegean islands. We computed landscape metrics (total area and total perimeter–area ratio) in 4 concentric circles (250, 500, 750, and 1000 m) around the center of each bee sampling site including 3 habitat groups (namely phrygana, cultivated land, and natural forests). We further measured the local flower cover in 25 quadrats distributed randomly at the center of each sampling site. We found that the landscape scale is more important than the local scale in shaping abundance and species richness of bees. Furthermore, habitat configuration was more important than the total area of habitats, probably because it affects bees’ movement across the landscape. Phrygana and natural forests had a positive effect on bee demographics, while cultivated land had a negative effect. This demonstrates that phryganic specialists drive bee assemblages in these seminatural landscapes. This finding, together with the shown importance of landscape scale, should be considered for the management of wild bees with special emphasis placed on the spatial configuration of seminatural habitats.  相似文献   

3.
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.  相似文献   

4.
Landscape context and habitat quality may have pronounced effects on the diversity of flower visiting insects. We investigated whether the effects of landscape context and habitat quality on flower visiting insects interact in agricultural landscapes in the Netherlands. Landscape context was expressed as the area of semi-natural habitats or the density of linear landscape features, and was quantified at spatial scales ranging from 250 to 2000 m. Habitat quality was determined as flower abundance. Species richness and abundance of hoverflies and bees were determined along 16 stream banks experiencing similar environmental conditions but situated in areas with contrasting landscape context. Only flower abundance and the area of semi-natural habitats within 500–1000 m were significantly related to species richness of hoverflies and bees and these factors had interacting effects on both species groups. Our results suggest that the regional area of semi-natural habitats had a positive effect on hoverfly species richness when flower abundance was relatively high, but not when flower abundance was low. Moreover, flower abundance had positive effects on hoverfly species richness only in areas with relatively many semi-natural habitats. Contrastingly, flower abundance had a more positive effect on bee species richness in landscapes with few semi-natural habitats compared to landscapes with more semi-natural habitats. Our results suggest that the importance of landscape context for the species richness of flower visiting insects depends upon the quality of the habitat patches.  相似文献   

5.
Perennial wildflower strips (WFS) are known to have positive effects on wild bees in intensively used agricultural landscapes. Little knowledge exists, however, about the drivers of wild bee occurrence and if Red List species also profit from this agri-environmental scheme (AES). Therefore, we studied wild bees on transects along 20 four- to five-year-old WFS and in 10 cereal fields without AES (CONTROL sites) in differently structured landscapes across Saxony-Anhalt (Germany). In addition to local site parameters, we measured parameters of landscape structure in a 1 km radius of the WFS and CONTROL sites. The overall species richness of wild bees (125 species in total, 23 on average), including numerous specialist and Red List species, indicates a high attractiveness of perennial WFS sown with 30 native forbs. In CONTROL fields, 11 bee species (on average only one) were found.The species richness and abundance of wild bees were positively affected by local site conditions of the WFS and CONTROL sites, such as the overall number of sown and spontaneous forbs, the amount of flower rewards of sown forbs available to pollinators (Pollinator Feeding Index), and negatively by the cover of grasses. Therefore, seed mixtures of future AES should comprise a high diversity of wildflower species relevant as pollen sources for wild bees. The share of Red List wild bee species was strongly influenced by the landscape context and increased e.g. with Shannon landscape diversity and the availability of non-forest woody habitats and water bodies in the 1 km surroundings. These results suggest that besides the establishment of high-diversity WFS, semi-natural habitat structures have to be promoted to preserve rare wild bees especially in structurally simple agricultural landscapes.  相似文献   

6.
传粉蜂为作物生产和粮食安全提供重要的生态系统服务。随着农业经济的不断发展,土地利用强度加剧,大量自然或半自然生境已经转变为农业用地。景观均质化和集约化管理导致野生蜂多样性下降,从而威胁到农业可持续生产。本研究以北京市昌平区苹果园为对象,探究景观复杂度(半自然生境比例)、局地管理强度(地表开花植物多样性和土壤全氮)及其交互作用对传粉蜂多样性的影响。结果表明: 共捕获传粉蜂8642头,其中人工蜂5125头,野生蜂分属5科14属49种3517头。传粉蜂多样性对景观复杂度和局地管理强度响应的最优尺度在500 m。样点半径500 m范围内,总传粉蜂和野生蜂多度随周围半自然生境增加均呈显著上升趋势。景观复杂度与开花植物多样性的交互作用对总传粉蜂和野生蜂物种丰富度有显著影响。当景观复杂度较低时(≤29.9%),总传粉蜂和野生蜂物种丰富度与开花植物多样性呈显著正相关;而当景观复杂度较高时(>29.9%),总传粉蜂和野生蜂物种丰富度与开花植物多样性呈显著负相关。此外,人工蜂多度随果园内局地开花植物多样性和土壤全氮增加呈显著升高趋势。土壤全氮与开花植物多样性的交互作用对人工蜂多度有显著影响。当土壤全氮含量较低时(≤1.9 g·kg-1),人工蜂多度与开花植物多样性呈显著正相关;而当土壤全氮含量较高时(>1.9 g·kg-1),人工蜂多度与开花植物多样性呈显著负相关。农业景观中半自然生境比例的增加有利于提高野生蜂多度,而地表开花植物多样性可以促进传粉蜂多样性,但是受到景观尺度(半自然生境比例)和局地尺度(氮肥施用)的影响。因此,农业景观中野生蜂多样性的维持需要综合考虑多尺度因素来制定保护策略。尽可能保留更高比例的耕地仍然是生产的长期需求,而保持中等景观复杂度,增加地表开花植物多样性,减少氮肥施用量将是促进苹果园传粉蜂多样性的有效方式。  相似文献   

7.
Christina M. Kennedy  Eric Lonsdorf  Maile C. Neel  Neal M. Williams  Taylor H. Ricketts  Rachael Winfree  Riccardo Bommarco  Claire Brittain  Alana L. Burley  Daniel Cariveau  Luísa G. Carvalheiro  Natacha P. Chacoff  Saul A. Cunningham  Bryan N. Danforth  Jan‐Hendrik Dudenhffer  Elizabeth Elle  Hannah R. Gaines  Lucas A. Garibaldi  Claudio Gratton  Andrea Holzschuh  Rufus Isaacs  Steven K. Javorek  Shalene Jha  Alexandra M. Klein  Kristin Krewenka  Yael Mandelik  Margaret M. Mayfield  Lora Morandin  Lisa A. Neame  Mark Otieno  Mia Park  Simon G. Potts  Maj Rundlf  Agustin Saez  Ingolf Steffan‐Dewenter  Hisatomo Taki  Blandina Felipe Viana  Catrin Westphal  Julianna K. Wilson  Sarah S. Greenleaf  Claire Kremen 《Ecology letters》2013,16(5):584-599
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local‐scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high‐quality habitats; bee richness on conventional fields with low diversity benefited most from high‐quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high‐quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.  相似文献   

8.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

9.
Wildlife-friendly management practices promote pollinators and pollination services in agricultural landscapes. Wild bee densities are driven by landscape composition, as they benefit from an increased availability of nesting and foraging resources at landscape scale. However, effects of landscape composition on bee foraging decisions and consequences for crop pollination have rarely been studied. We investigated, how landscape composition affects bee densities and foraging behavior in faba bean (Vicia faba L.) fields and how this impacts faba bean yield. We recorded densities and nectar robbing behavior of honeybees, long- tongued and short-tongued bumblebees in faba bean fields in eleven landscapes with varying landscape composition (e.g. land cover of oilseed rape, faba bean and semi-natural habitats). Moreover, we assessed yield components of faba beans via pollinator exclusion experiments. Increasing covers of faba bean and semi-natural habitats positively influenced bumblebee densities, while high oilseed rape covers negatively affected short-tongued bumblebee densities in bean fields. Increased faba bean covers enhanced the proportion of nectar-robbing short-tongued bumblebees. The number of beans per pod was increased by insect pollination, while the number of pods was decreased; these effects however depended on variety. Landscape composition interacted with bee densities in shaping yield components in V. faba. Our study emphasizes the importance of considering landscape management to maximize crop yields, as shown for the case of faba beans. The composition of agricultural landscape can modulate bee densities in crop fields, bees foraging behavior and pollination services.  相似文献   

10.
Local species richness of butterflies can be expected to benefit from both local habitat properties as well as the availability of suitable habitats and source populations in the surrounding landscape. Whether local species richness is dependent on local or landscape factors can be assessed by examining the relationship between local and landscape species richness. Here we studied how local species richness is related to landscape‐level species richness in landscapes differing in agricultural intensity. The relationship was linear for field boundaries in intensively cultivated landscapes and non‐linear in less‐intensively cultivated landscapes. In landscapes containing semi‐natural grasslands (on average 4% of overall land‐use), the relationship was non‐linear for field boundaries, but linear when considering local species richness of the grasslands themselves. These results show that local factors are more important than landscape factors in determining local species richness in landscapes which contained semi‐natural grasslands. Local species richness was limited by landscape factors in intensively cultivated landscapes. This interpretation was supported by the relationship between local species richness and landscape‐scale average mobility and generalist percentage of butterfly assemblages. We conclude that the management of field boundary habitat quality for butterflies is expected to be most effective in landscapes with semi‐natural grasslands, the species composition of which in turn is dependent on the regional occurrence of grasslands. Based on our results, managing non‐crop habitats for the conservation of habitat specialists and species with poor mobility will be most efficient in regions where patches of semi‐natural grasslands occur.  相似文献   

11.
Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.  相似文献   

12.
The bees (Hymenoptera: Apiformes) are important pollinators in many ecosystems, but their diversity has declined in Europe during the past century, mainly due to habitat loss. However, some of the habitat requirements of wild bees are met in anthropogenic landscape elements, such as road sides, power-line strips and field edges. Moreover, as the bee species assemblages change throughout the season the habitat requirements of the bee fauna may change accordingly. Understanding such seasonally distinct responses of solitary bees with different phenologies may be of high value for local conservation planning. The purpose of this study was to examine if the habitat quality of field edges for solitary bees change throughout the season, and how this temporal variation relates to local habitat and landscape conditions. By sampling solitary bees in 18 field edges in southeast Norway throughout the season we found that the species richness and abundance of bees was highest in sun exposed field edges, independently of the season. However, we found phenologically distinct responses to the landscape context. Moreover, field edges situated in landscapes with a high proportion of forests and semi-natural landscape elements hosted the most phenologically diverse bee species assemblages. We conclude that in order to fulfil the habitat requirements of bee species assemblages throughout the season, one should conserve and direct habitat restoration schemes towards increasing sun exposure at field edges with a diverse flora and a high proportion of semi-natural areas in the vicinity.  相似文献   

13.
We investigated the role of local and landscape environmental variables on anurans density classified as habitat specialists and generalists in grassland landscapes, known as South Brazilian grasslands (SBG). In this region, we surveyed 187 ponds distributed over 40 landscape sampling units. For each pond, 31 local environmental variables were measured. Each landscape sampling unit was embedded within a larger regional sampling unit with different landscape properties. For each landscape and regional sampling units, 16 landscape metrics were extracted from a land cover and use map. We recorded 35 species, eleven of which are specialists in the SBG. The specialists were affected by 11 local and 2 landscape environmental variables, while generalists were affected by 14 local and one landscape environmental variable. Thus, specialists and generalists presented different relationships with local and landscape variables, but in general local variables had a greater influence on the density of anurans than the landscape variables. However, the landscape indirectly influenced local variables because higher quality ponds were in landscapes with higher percentages of natural habitat. In conclusion, reproductive sites with higher local quality and located within landscapes with higher percentages of natural grasslands are essential to conserve anurans in this habitat. Effective conservation of such sites would benefit from further studies that assess effects of land use and biotic integrity of ponds, which can help to determine (a) the relative effects of local habitat quality of ponds and (b) the effectiveness of protecting ponds and their local surroundings for anuran conservation in SBG. Abstract in Portuguese is available with online material.  相似文献   

14.
Increasing landscape complexity can mitigate negative effects of agricultural intensification on biodiversity by offering resources complementary to those provided in arable fields. In particular, grazed semi-natural grasslands and woody elements support farmland birds, but little is known about their relative effects on bird diversity and community composition. In addition, the relative importance of local habitat versus landscape composition remains unclear. We investigated how the presence of semi-natural grasslands, the number of woody elements and the composition of the wider agricultural landscape affect bird species richness, true diversity (exponential Shannon diversity) and species composition. Bird communities were surveyed four times on 16 paired transects of 250 m each with 8 transects placed between a crop field and a semi-natural grassland and 8 transects between two crop fields with no semi-natural grasslands in the vicinity. The number of woody elements around transects was selected as an important predictor in all models, having a positive effect on species richness and true diversity, while the local presence of semi-natural grasslands was not selected in the best models. However, species richness and true diversity increased with increasing cover of ley and semi-natural grasslands, whereas species composition was modified by the coverage of winter wheat at the landscape scale. Furthermore, bird species richness, true diversity and species composition differed between sampling dates. As bird diversity benefited from woody elements, rather than from the local presence of semi-natural grasslands as such, it is important to maintain woody structures in farmland. However, the positive effect of grassland at the landscape scale highlights the importance of habitat variability at multiple scales. Because species richness and true diversity were affected by different landscape components compared to species composition, a mosaic of land-use types is needed to achieve multiple conservation goals across agricultural landscapes.  相似文献   

15.
Honey bees and wild bees provide critical pollination services to agricultural ecosystems; however, the relative contributions of different bee taxa are not well understood. The natural habitats surrounding farmland support food and nesting resources for wild bees and therefore play an important role in the maintenance of crop pollination. In this study, we selected Cucurbita pepo L. (squash) as a model crop to investigate the relative importance of honey bees and bumblebees in pollinating the crop. Thirteen fields, which were surrounded by a gradient of natural habitat, were investigated on the Yunnan‐Guizhou Plateau in China. We measured the visit densities of honey bees and bumblebees, the number of pollen grains deposited in a single visit by the two bee taxa, as well as the overall pollen grains deposited on stigmas during a flowering day, and then used Bayesian inference to decouple the pollen grains deposited by either the honey bees or the bumblebees. Compared with honey bees, bumblebees deposited a higher number of pollen grains on stigmas in a single visit, but had a lower visit density than honey bees. Meanwhile, the bumblebee visit density increased along the proportion of natural habitat, while the honey bee visit density was not affected by the surrounding natural habitat. Data simulations using Bayesian inference showed that on a flowering day, the number of pollen grains deposited by bumblebees increased with the proportion of natural habitat in the surrounding landscape, but the number of pollen grains deposited by honey bees did not. Moreover, the total numbers of pollen grains deposited by honey bees or bumblebees alone were all below 2000 (the critical level to satisfy the pollination requirement of this crop). Pollen calculations demonstrated that the number of pollen grains deposited by the two bee taxa was greater than 2000 in fields surrounded by more than 13% natural habitat (grasslands and forests). The results revealed that bumblebees ensured C. pepo pollination in combination with honey bees in the highland agricultural ecosystems.  相似文献   

16.
The preservation of remaining semi-natural grasslands in Europe has a high conservation priority. Previously, the effects of artificial fertilisation and grazing intensity on grassland animal and plant taxa have been extensively investigated. In contrast, little is known of the effects of tree and shrub cover within semi-natural grasslands and composition of habitats in the surrounding landscape on grassland taxa. We evaluated the effect that each of these factors has on species richness and community structure of vascular plants, butterflies, bumble bees, ground beetles, dung beetles and birds surveyed simultaneously in 31 semi-natural pastures in a farmland landscape in south-central Sweden. Partial correlation analyses showed that increasing proportion of the pasture area covered by shrubs and trees had a positive effect on species richness on most taxa. Furthermore, species richness of nectar seeking butterflies and bumble bees were negatively associated with grazing intensity as reflected by grass height. At the landscape level, species richness of all taxa decreased (butterflies and birds significantly so) with increasing proportion of urban elements in a 1-km2 landscape area centred on each pasture, while the number of plant and bird species were lower in landscapes with large proportion of arable fields. Our results differed markedly depending on whether the focus was on species richness or community structure. Canonical correspondence analyses (CCA) showed that the abundance of most taxa was ordered along a gradient describing tree cover within pastures and proportion of arable fields in the landscape. However, subsets of grassland birds and vascular plants, respectively, showed markedly different distribution patterns along axis one of the CCA. In contrast to current conservation policy of semi-natural pastures in Sweden, our results strongly advise against using a single-taxon approach (i.e., grassland vascular plants) to design management and conservation actions in semi-natural pastures. Careful consideration of conservation values linked to the tree and shrub layers in grasslands should always precede decisions to remove trees and shrubs on the grounds of promoting richness of vascular plants confined to semi-natural grasslands. Finally, the importance of landscape composition for mobile organisms such as birds entails that management activities should focus on the wider countryside and not exclusively on single pastures.  相似文献   

17.
Wild bees are threatened by multiple interacting stressors, such as habitat loss, land use change, parasites, and pathogens. However, vineyards with vegetated inter‐rows can offer high floral resources within viticultural landscapes and provide foraging and nesting habitats for wild bees. Here, we assess how vineyard management regimes (organic vs. conventional; inter‐row vegetation management) and landscape composition determine the inter‐row plant and wild bee assemblages, as well as how these variables relate to functional traits in 24 Austrian and 10 South African vineyards. Vineyards had either permanent vegetation cover in untilled inter‐rows or temporary vegetation cover in infrequently tilled inter‐rows. Proportion of seminatural habitats (e.g., fallows, grassland, field margins) and woody structures (e.g., woodlots, single trees, tree rows) were used as proxies for landscape composition and mapped within 500‐m radius around the study vineyards. Organic vineyard management increased functional richness (FRic) of wild bees and flowering plants, with woody structures marginally increasing species richness and FRic of wild bees. Wild bee and floral traits were differently associated across the countries. In Austria, several bee traits (e.g., lecty, pollen collection type, proboscis length) were associated with flower color and symmetry, while in South African vineyards, only bees’ proboscis length was positively correlated with floral traits characteristic of Asteraceae flowers (e.g., ray–disk morphology, yellow colors). Solitary bee species in Austria benefitted from infrequent tillage, while ground nesting species preferred inter‐rows with undisturbed soils. Higher proportions of woody structures in surrounding landscapes resulted in less solitary and corbiculate bees in Austria, but more aboveground nesting species in South Africa. In both countries, associations between FRic of wild bees and flowering plants were positive both in organic and in conventional vineyards. We recommend the use of diverse cover crop seed mixtures to enhance plant flowering diversity in inter‐rows, to increase wild bee richness in viticultural landscapes.  相似文献   

18.
Metapopulation theory predicts that species richness and total population density of habitat specialists increase with increasing area and regional connectivity of the habitat. To test these predictions, we examined the relative contributions of habitat patch area, connectivity of the regional habitat network and local habitat quality to species richness and total density of butterflies and day-active moths inhabiting semi-natural grasslands. We studied butterflies and moths in 48 replicate landscapes situated in southwest Finland, including a focal patch and the surrounding network of other semi-natural grasslands within a radius of 1.5 km from the focal patch. By applying the method of hierarchical partitioning, which can distinguish between independent and joint contributions of individual explanatory variables, we observed that variables of the local habitat quality (e.g. mean vegetation height and nectar plant abundance) generally showed the highest independent effect on species richness and total density of butterflies and moths. Habitat area did not show a significant independent contribution to species richness and total density of butterflies and moths. The effect of habitat connectivity was observed only for total density of the declining butterflies and moths. These observations indicate that the local habitat quality is of foremost importance in explaining variation in species richness and total density of butterflies and moths. In addition, declining butterflies and moths have larger populations in well-connected networks of semi-natural grasslands. Our results suggest that, while it is crucial to maintain high-quality habitats by management, with limited resources it would be appropriate to concentrate grassland management and restoration to areas with well-connected grassland networks in which the declining species currently have their strongest populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
European agricultural landscapes are mosaics of intensively cultivated areas and semi-natural elements. Although comprising only a small fraction of the total area, semi-natural elements provide habitat for most of the landscape biodiversity. Agricultural intensification has increasingly fragmented semi-natural elements and species numbers are in decline. Insights into the effects of landscape structure on species’ distributions within and among semi-natural habitats are needed to conserve biodiversity in agricultural landscapes more effectively. We investigated the landscape- and habitat-specific diversity partitions of wild bees, true bugs, and carabid beetles in two differently structured agricultural landscapes in Switzerland. In each landscape, we partitioned the total species diversity (γ) into its additive components within (P) and among patches (βP) and among habitats (βH). In the landscape characterized by a patchy, isolated distribution of habitat elements, among-patch diversity (βP) explained 44% of the total species richness (γ) and was significantly higher than expected under a random distribution of samples among habitat patches; in the landscape with higher habitat connectivity, among-patch diversity (βP) comprised 32% of the total species richness (γ) and did not differ from the random expectation. Habitat-specific within-patch contributions to species richness were similarly low across habitat types (P=23–24%) in the patchy landscape, whereas in the more connected landscape within-patch partitions tended to be higher and differed among habitat types (P=22–38%). Functionally different groups of bees, true bugs, and carabids also responded differently to landscape structure in a manner that was consistent with known differences in resource specialization and dispersal ability. Differences in diversity partitions among landscapes and taxa indicate the need for flexible conservation strategies. Conservation of habitat-specific diversity may require more habitat patches in landscapes that have lower habitat connectivity and low within-patch diversity (P) than in landscapes with higher within-patch diversity (P).  相似文献   

20.
Although an extensive research has been done on the contribution of wild insects to apple pollination, most of these studies did not evaluate the effect of the surrounding landscape context on local pollinator communities. Our aim was to compare communities of wild bees in 31 equally managed apple orchards located in three contrasting landscape types (either dominated by apple, forest, or grasslands) and along an elevation gradient and to test a potential interaction between landscape context and elevation. The study was carried out in 2009 in Trentino (NE Italy), one of the major apple growing areas of Europe with ~12,000 ha of commercial orchards distributed between 150 and 950 m a.s.l. We found that apple-dominated landscapes drastically reduced wild bee species richness and abundance in the orchard compared to landscapes dominated by either grassland or forest. Forest-dominated landscapes benefited local species richness more than grassland-dominated landscapes, while abundance did not differ between grassland and forest. Total species richness and abundance further declined with increasing elevation, while no interactive effect was found between temperature and landscape context. The abundance of Apis mellifera in the apple-dominated landscapes was two to four times higher than in the landscapes dominated by forest and grasslands, respectively. Measures to restore natural pollinator communities by providing suitable habitats around the orchard would not only benefit conservation of general biodiversity, but would probably also contribute to reduce the dependence of apple pollination on managed honey bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号