共查询到20条相似文献,搜索用时 0 毫秒
1.
Jennifer K. Miller M. Travis Harrison Annalisa D’Andrea Aaron N. Endsley Fangfang Yin Krishna Kodukula Douglas S. Watson 《Probiotics and antimicrobial proteins》2013,5(2):69-80
Susceptibility to deadly diarrheal diseases is partly due to widespread pediatric vitamin A deficiency. To increase vitamin A coverage in malnourished children, we propose to engineer a probiotic bacterium that will produce β-carotene in the intestine, which will be metabolized to vitamin A. Such a therapy has the potential to broadly stimulate mucosal immunity and simultaneously reduce the incidence and duration of diarrheal disease. To that end, a β-carotene-producing variant of the probiotic Escherichia coli strain Nissle 1917 (EcN-BETA) was generated. Notably, the strain produces β-carotene under anaerobic conditions, reflective of the gut environment. EcN-BETA also retains β-carotene production capability after lyophilization, suggesting that it may be amenable to dry formulation. Moreover, EcN-BETA activates murine dendritic cells in vitro, suggesting that the presence of β-carotene may not diminish the immunostimulatory capacity of EcN. Finally, we present a framework through which further improvements may enable approaches such as the one described in this report to yield innovative life-saving therapies for the developing world. 相似文献
2.
3.
Jan Philip Wurm Elke Duchardt Britta Meyer Belinda Z. Leal Peter Kötter Karl-Dieter Entian Jens Wöhnert 《Biomolecular NMR assignments》2009,3(2):251-254
Nep1 from Methanocaldococcus jannaschii is a 48 kDa dimeric protein belonging to the SPOUT-class of S-adenosylmethionine dependent RNA-methyltransferases and acting as a ribosome assembly factor. Mutations in the human homolog are the cause of Bowen-Conradi syndrome. We report here 1H, 15N and 13C chemical shift assignments for the backbone of the protein in its apo state. 相似文献
4.
Danielle Miller Kaitlin O'Brien Huimin Xu Robert H. White 《Journal of bacteriology》2014,196(5):1064-1072
We characterize here the MJ1541 gene product from Methanocaldococcus jannaschii, an enzyme that was annotated as a 5′-methylthioadenosine/S-adenosylhomocysteine deaminase (EC 3.5.4.31/3.5.4.28). The MJ1541 gene product catalyzes the conversion of 5′-deoxyadenosine to 5′-deoxyinosine as its major product but will also deaminate 5′-methylthioadenosine, S-adenosylhomocysteine, and adenosine to a small extent. On the basis of these findings, we are naming this new enzyme 5′-deoxyadenosine deaminase (DadD). The Km for 5′-deoxyadenosine was found to be 14.0 ± 1.2 μM with a kcat/Km of 9.1 × 109 M−1 s−1. Radical S-adenosylmethionine (SAM) enzymes account for nearly 2% of the M. jannaschii genome, where the major SAM derived products is 5′-deoxyadenosine. Since 5′-dA has been demonstrated to be an inhibitor of radical SAM enzymes; a pathway for removing this product must be present. We propose here that DadD is involved in the recycling of 5′-deoxyadenosine, whereupon the 5′-deoxyribose moiety of 5′-deoxyinosine is further metabolized to deoxyhexoses used for the biosynthesis of aromatic amino acids in methanogens. 相似文献
5.
6.
Ankur D. Mehta Norbert W. Seidler 《Journal of enzyme inhibition and medicinal chemistry》2013,28(2):199-203
β-Alanine exhibits neurotransmitter activity and is a component of the anti-glycation agent carnosine. We propose that β-alanine may have additional properties which may be of physiological significance. Interestingly, stress modulates the level of β-alanine, which regulates excitotoxicity responses and prevents neuronal cell death. We hypothesize that β-alanine's protective role may involve preservation of enzyme structure and function, suggesting that β-alanine may act as a chemical chaperone. We used light scattering, enzyme activity and intrinsic fluorescence to monitor heat-induced changes in lactate dehydrogenase (LDH) in the presence and absence of β-alanine. We observed that β-alanine suppressed heat-induced LDH inactivation, prevented LDH aggregation, ameliorated the decrease in intrinsic fluorescence and reactivated thermally denatured LDH. These observations support the hypothesis that β-alanine has chaperone-like activity and may play a cellular role in the preservation of enzyme function. 相似文献
7.
8.
9.
Margaret R. Kasschau Christopher M. Skisak J. Philip Cook W. Ronald Mills 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1984,154(2):181-186
Summary During high salinity stress, -alanine accumulates to high levels in the sea anemone,Bunodosoma cavernata. Following a salinity increase from 26 to 40 -alanine increased 28-fold from 1.5 to 41.9 moles/g dry weight. Both whole animal studies and experiments with cell free homogenates indicate that under high salinity conditions an increase in the rate of -alanine synthesis from aspartic acid as well as a decrease in the rate of -alanine oxidation are responsible for the observed accumulation of -alanine. The rate of aspartic acid decarboxylation to -alanine is about 3 times greater in anemones acclimated to 40 than for those in normal salinity water (26). -alanine oxidation to CO2 and acetyl-CoA proceeds 2.5 to 3 times slower in high salinity adaptedB. cavernata than in those acclimated to normal salinity. There is always a rapid degradation of uracil to -alanine, but this does not change with salinity.Abbreviations
CASF
cold acid soluble fraction
-
FAA
free amino acids
-
MES
2(N-morpholino) ethane sulfonic acid
-
NPS
ninhydrin positive substances
-
PCA
perchloric acid
-
TCA
trichloroacetic acid 相似文献
10.
Hiroya Tomita Yuusuke Yokooji Takuya Ishibashi Tadayuki Imanaka Haruyuki Atomi 《Journal of bacteriology》2014,196(6):1222-1230
β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms. 相似文献
11.
José Ruiz-Herrera 《Antonie van Leeuwenhoek》1991,60(2):73-81
Glucans are the most abundant polysaccharides present in fungi. The present review provides updated information on the structure and synthesis of -glucans in fungal cells. Synthesis of these polymers made up of B1,3 chains with a variable degree of B1,6 branching involves several reactions: initiation, chain elongation and branching, of which the most studied one is the elongation step. This reaction, catalyzed by the so-called glucan synthetases, utilizes UDPG as sugar donor. Properties of glucan synthetases are extremely variable depending on the fungal species, and their developmental stage. Because of the importance of these polysaccharides it is anticipated that comprehension of their mechanism of synthesis, is important for the understanding of cell wall assembly and cell growth and morphogenesis, as well as for the design of specific antifungal drugs.Abreviations UDPG
uridine-diphospho-glucose
- GDPG
guanosine-diphospho-glucose
- ADPG
adenosine-diphospho-glucose
- MW
molecular weight
- mic
minimal inhibitory concentration
- d.p.
degree of polymerization
- PAGE
polyacrylamide gel electrophoresis
- SDS
sodium dodecyl sulfate 相似文献
12.
《Archives of biochemistry and biophysics》1994,313(1):150-155
The role of 9-cis-β-carotene (9-cis-β-C) as a potential precursor of 9-cis-retinoic acid (9-cis-RA) has been examined in human intestinal microcosa in vitro. By using HPLC, uv spectra, and chemical derivatization analysis, both 9-cis-RA and all-trans-retinoic acid (all-trans-RA) have been identified in the postnuclear fraction of human intestinal microcosa after incubation with 9-cis-β-C at 37°C. The biosynthesis of both 9-cis-RA and all-trans-RA from 9-cis-β-C was linear with increasing concentrations of 9-cis-β-C (2-30 μM) and was linear with respect to tissue protein concentration up to 0.75 mg/ml. Retinoic acid was not detected when a boiled incubation mixture was incubated in the presence of 9-cis-β-C. The rate of synthesis of 9-cis- and all-trans-RA from 4 μM 9-cis-β-C were 16 ± 1 and 18 ± 2 pmol/hr/mg of protein, respectively. However, when 2 μM all-trans-β-C was added to the 4 μM 9-cis-β-C, the rate of all-trans-RA synthesis was increased to 38 ± 6 pmol/hr/mg of protein, whereas the rate of 9-cis-RA synthesis remained the same. These results suggest that 9-cis-RA is produced directly from 9-cis-β-C. Furthermore, incubations of either 0.1 μM 9-cis- or all-trans-retinal under the same incubation conditions showed that 9-cis-RA could also arise through oxidative conversion of 9-cis-retinal. Although only 9-cis-RA was detected when 9-cis-RA was used as the substrate, the isomerization of the all-trans-RA to 9-cis-RA cannot be ruled out, since both all-trans-RA and trace amounts of 9-cis-RA were detected when all-trans-retinal was incubated as the substrate. These data indicate that 9-cis-β-C can be a source of 9-cis-RA in the human. This conversion may have a significance in the anticarcinogenic action of β-C. 相似文献
13.
14.
This paper describes our finding on overlapping genes in Methanococcus jannaschii genome. We found that one of the open reading frames (ORFs) within the M. jannaschii genome contains the nucleotide sequence of tRNA(Ser), which raises a serious question of the correctness of the initiation codon assignment for that ORF. We suggest that there are two other possible AUG initiation codons downstream from the TTG triplet, which was initially considered as a translation start site. Only one of the AUG triplets is preceded by the Shine-Dalgarno sequence that seems to be required for binding the ribosome and initiation of translation. 相似文献
15.
α- and γ-l-Glutamyl dipeptides of l-β-phenyl-β-alanine are synthesized for the first time from l-glutamic acid and l-β-phenyl-β-alanine. In addition, the preparations and the properties of new intermediates, that is, l-β-phenyl-β-alanine benzylester p-toluenesulfonate and the N-carbobenzyloxy-α- and γ-dipeptide benzylesters, are described. Further proof of the structure previously proposed for the naturally occurring peptide is obtained by a critical comparison of the isolated and synthetic materials by various physical and chemical methods. 相似文献
16.
Datura meteloides; plants were fed with tiglic acid-[-14C] via the roots and after 2 days the percentage incorporation into the alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane, meteloidine and 3α,6β-ditigloyloxytropan-7β-ol were 15·2, 1·82, 2·2 and 1·8 respectively. 3α,6β-Ditigloyloxytropane was partially hydrolysed to 6β-hydroxy-3α-tigloyloxytropane which contained 58·1% of the radioactivity of the original base, whereas 3α,6β-ditigloyloxytropan-7β-ol gave meteloidine containing only 9·2% of the original activity. The results suggest that the di- and tri-hydroxytropanes may be formed by different routes. 相似文献
17.
We have engineered brewer's yeast as a general platform for de novo synthesis of diverse β-lactam nuclei starting from simple sugars, thereby enabling ready access to a number of structurally different antibiotics of significant pharmaceutical importance. The biosynthesis of β-lactam nuclei has received much attention in recent years, while rational engineering of non-native antibiotics-producing microbes to produce β-lactam nuclei remains challenging. Benefited by the integration of heterologous biosynthetic pathways and rationally designed enzymes that catalyze hydrolysis and ring expansion reactions, we succeeded in constructing synthetic yeast cell factories which produce antibiotic cephalosporin C (CPC, 170.1 ± 4.9 μg/g DCW) and the downstream β-lactam nuclei, including 6-amino penicillanic acid (6-APA, 5.3 ± 0.2 mg/g DCW), 7-amino cephalosporanic acid (7-ACA, 6.2 ± 1.1 μg/g DCW) as well as 7-amino desacetoxy cephalosporanic acid (7-ADCA, 1.7 ± 0.1 mg/g DCW). This work established a Saccharomyces cerevisiae platform capable of synthesizing multiple β-lactam nuclei by combining natural and artificial enzymes, which serves as a metabolic tool to produce valuable β-lactam intermediates and new antibiotics. 相似文献
18.
Phloroglucinol derivatives are a major class of secondary metabolites of wide occurrence in biological systems. In the bacteria
kingdom, these compounds can only be synthesized by some species of Pseudomonads. Pseudomonas spp. could produce 2,4-diacetylphloroglucinol (DAPG) that plays an important role in the biological control of many plant
pathogens. In this review, we summarize knowledge about synthesis of phloroglucinol compounds based on the DAPG biosynthetic
pathway. Recent advances that have been made in understanding phloroglucinol compound biosynthesis and regulation are highlighted.
From these studies, researchers have identified the biosynthesis pathway of DAPG. Most of the genes involved in the biosynthesis
pathway have been cloned and characterized. Additionally, heterologous systems of the model microorganism Escherichia coli are constructed to produce phloroglucinol. Although further work is still required, a full understanding of phloroglucinol
compound biosynthesis is almost within reach. This review also suggests new directions and attempts to gain some insights
for better understanding of the biosynthesis and regulation of DAPG. The combination of traditional biochemistry and molecular
biology with new systems biology and synthetic biology tools will provide a better view of phloroglucinol compound biosynthesis
and a greater potential of microbial production. 相似文献
19.
To search precursors of ethylene in banana fruits, ethylene formation from acetate-2-14C and fumarate-2,3-14C by banana slices was studied. Ethylene-14C formation from acetate-2-l4C was reduced by the addition of malonate or β-hydroxypropionate, and it was enhanced in a sealed chamber in comparison with the case in an aeration chamber. No label of fumarate-2,3-14C was incorporated into ethylene.From these facts it was suggested that acetate-2-14C was incorporated into ethylene via malonate and β-hydroxypropionate. Participation of fumarate in ethylene biosynthesis of banana fruits was ruled out. β-Hydroxypropionate was postulated as an effective precursor of ethylene formation from acetate-2-l4C. 相似文献
20.
Samuel I. Beale 《Plant physiology》1970,45(4):504-506
When autotrophically growing cultures of Chlorella are treated with levulinic acid, delta-aminolevulinic acid is excreted into the medium, providing a direct demonstration of alpha-aminolevulinic acid production in a green plant. Evidence is presented which indicates that alpha-aminolevulinic acid formation may be the the rate-controlling step of chlorophyll synthesis in Chlorella, and that control of the rate of alpha-aminolevulinic acid synthesis may be exerted at the level of production and breakdown of an enzyme which catalyzes its formation. 相似文献