首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
利用已报道的黑腹果蝇U83基因搜索果蝇基因数据库,鉴定了10种新的果蝇科U83同源基因,它们均位于相应物种核蛋白基因rpl3的内含子中。以冈比亚按蚊为外类群,对11种果蝇的U83核苷酸序列作进化关系分析,用邻接法重建了系统发生树,结果与传统方法构建的系统发生树相比,能反映果蝇科的大致进化关系,但还存在部分差别。为增加序列信息,把序列长度拓展至整个U83所在的内含子,同法构建系统发生树,结果与传统系统发生树几乎完全一致。该研究是用boxC/D snoRNA基因序列构建系统发生树的首次尝试,实验结果证明U83可以很好地用于构建果蝇科内各物种的种系发生树。  相似文献   

4.
The high degree of rRNA pseudouridylation in Drosophila melanogaster provides a good model for studying the genomic organization, structural and functional diversity of box H/ACA small nucleolar RNAs (snoRNAs). Accounting for both conserved sequence motifs and secondary structures, we have developed a computer-assisted method for box H/ACA snoRNA searching. Ten snoRNA clusters containing 42 box H/ACA snoRNAs were identified from D.melanogaster. Strikingly, they are located in the introns of eight protein-coding genes. In contrast to the mode of one snoRNA per intron so far observed in all animals, our results demonstrate for the first time a novel polycistronic organization that implies a different expression strategy for a box H/ACA snoRNA gene when compared to box C/D snoRNAs in D.melanogaster. Mutiple isoforms of the box H/ACA snoRNAs, from which most clusters are made up, were observed in D.melanogaster. The degree of sequence similarity between the isoforms varies from 99% to 70%, implying duplication events in different periods and a trend of enlarging the intronic snoRNA clusters. The variation in the functional elements of the isoforms could lead to partial alternation of snoRNA's function in loss or gain of rRNA complementary sequences and probably contributes to the great diversity of rRNA pseudouridylation in D.melanogaster.  相似文献   

5.
The ribosomal protein L40E from archaeon Sulfolobus solfataricus is a component of the 50S ribosomal subunit. L40E is a 56-residue, highly basic protein that contains a C4 zinc finger motif, CRKC_X(10)_CRRC. Homologs are found in both archaea and eukaryotes but are not present in bacteria. Eukaryotic genomes encode L40E as a ubiquitin-fusion protein. L40E was absent from the crystal structure of euryarchaeota 50S ribosomal subunit. Here we report the three-dimensional solution structure of L40E by NMR spectroscopy. The structure of L40E is a three-stranded beta-sheet with a simple beta2beta1beta3 topology. There are two unique characteristics revealed by the structure. First, a large and ordered beta2-beta3 loop twists to pack across the one side of the protein. L40E contains a buried polar cluster comprising Lys19, Lys20, Cys22, Asn29, and Cys36. Second, the surface of L40E is almost entirely positively charged. Ten conserved basic residues are positioned on the two sides of the surface. It is likely that binding of zinc is essential in stabilizing the tertiary structure of L40E to act as a scaffold to create a broad positively charged surface for RNA and/or protein recognition.  相似文献   

6.
Among the panel of monoclonal antibodies (mAb) against Toxoplasma gondii, mAb of Tg621 (Tg621) clone blotted 38 kDa protein which localized in the cytoplasm of tachyzoites by immunofluorescence microscopy. The protein was not released into the parasitophorous vacuole during or after invasion. The cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg621. The full length cDNA sequence was completed with 5'-RACE as 1,592 bp, which contained open reading frame of 942 bp. The deduced amino acid sequence of Tg621 consisted of a polypeptide of 313 amino acids, with significant homology to ribosomal P proteins (RPP) of other organisms especially high to those of apicomplexan species. The expressed and purified TgRPP was assayed in western blot with the sera of toxoplasmosis patients and normal sera, which resulted in the 74.0% of positive reactions in toxoplasmosis patients whereas 8.3% in normal group. Therefore, the antibody formation against TgRPP in toxoplasmosis patients was regarded as specific for T. gondii infection and suggested a potential autoantibody.  相似文献   

7.
Detailed studies of ribosomal proteins (RPs), essential components of the protein biosynthetic machinery, have been hampered by the lack of readily accessible chromosomal deletions of the corresponding genes. Here, we report the systematic genomic deletion of 41 individual RP genes in Escherichia coli, which are not included in the Keio collection. Chromosomal copies of these genes were replaced by an antibiotic resistance gene in the presence of an inducible, easy-to-exchange plasmid-born allele. Using this knockout collection, we found nine RPs (L15, L21, L24, L27, L29, L30, L34, S9, and S17) nonessential for survival under induction conditions at various temperatures. Taken together with previous results, this analysis revealed that 22 of the 54 E. coli RP genes can be individually deleted from the genome. These strains also allow expression of truncated protein variants to probe the importance of RNA-protein interactions in functional sites of the ribosome. This set of strains should enhance in vivo studies of ribosome assembly/function and may ultimately allow systematic substitution of RPs with RNA.  相似文献   

8.
The ribosomal protein S28E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. Sequence homologs of S28E are found only in archaea and eukaryotes. Here we report the three-dimensional solution structure of S28E by NMR spectroscopy. S28E contains a globular region and a long C-terminal tail protruding from the core. The globular region consists of four antiparallel beta-strands that are arranged in a Greek-key topology. Unique features of S28E include an extended loop L2-3 that folds back onto the protein and a 12-residue charged C-terminal tail with no regular secondary structure and greater flexibility relative to the rest of the protein. The structural and surface resemblance to OB-fold family of proteins and the presence of highly conserved basic residues suggest that S28E may bind to RNA. A broad positively charged surface extending over one side of the beta-barrel and into the flexible C terminus may present a putative binding site for RNA.  相似文献   

9.
We have identified a novel archaeal protein that apparently plays two distinct roles in ribosome metabolism. It is a polypeptide of about 18 kDa (termed Rbp18) that binds free cytosolic C/D box sRNAs in vivo and in vitro and behaves as a structural ribosomal protein, specifically a component of the 30S ribosomal subunit. As Rbp18 is selectively present in Crenarcheota and highly thermophilic Euryarchaeota, we propose that it serves to protect C/D box sRNAs from degradation and perhaps to stabilize thermophilic 30S subunits.  相似文献   

10.
Using Arabidopsis thaliana, we identified the cis-element involved in the plant unfolded protein response (UPR). In transgenic plants, tunicamycin stimulated expression of a reporter gene under the control of the BiP promoter and promoter analysis identified a 24 bp sequence crucial to this induction. When fused with a minimal promoter, a hexamer of this sequence was sufficient for induction of a reporter gene in protoplasts treated with tunicamycin or dithiothreitol. Induction rate equivalent to original promoter was observed when the assay was conducted in transgenic plants. This 24 bp sequence contained two elements also responsible for the UPR in animals. Either of these elements was sufficient for the plant UPR, indicating conservation between animals and plants of cis-elements involved in the UPR.  相似文献   

11.
The Nop56/58-fibrillarin heterocomplex is a core protein complex of the box C/D ribonucleoprotein particles that modify and process ribosomal RNAs. The previous crystal structure of the Archaeoglobus fulgidus complex revealed a symmetric dimer of two Nop56/58-fibrillarin complexes linked by the coiled-coil domains of the Nop56/68 proteins. However, because the A. fulgidus Nop56/58 protein lacks some domains found in most other species, it was thought that the bipartite architecture of the heterocomplex was not likely a general phenomenon. Here we report the crystal structure of the Nop56/58-fibrillarin complex bound with methylation cofactor, S-adenosyl-L-methionine from Pyrococcus furiosus, at 2.7 A. The new complex confirms the generality of the previously observed bipartite arrangement. In addition however, the conformation of Nop56/58 in the new structure differs substantially from that in the earlier structure. The distinct conformations of Nop56/58 suggest potential flexibility in Nop56/58. Computational normal mode analysis supports this view. Importantly, fibrillarin is repositioned within the two complexes. We propose that hinge motion within Nop56/58 has important implications for the possibility of simultaneously positioning two catalytic sites at the two target sites of a bipartite box C/D guide RNA.  相似文献   

12.
The Archaeoglobus fulgidis gene RS27_ARCFU encodes the 30S ribosomal protein S27e. Here, we present the high-quality NMR solution structure of this archaeal protein, which comprises a C4 zinc finger motif of the CX(2)CX(14-16)CX(2)C class. S27e was selected as a target of the Northeast Structural Genomics Consortium (target ID: GR2), and its three-dimensional structure is the first representative of a family of more than 116 homologous proteins occurring in eukaryotic and archaeal cells. As a salient feature of its molecular architecture, S27e exhibits a beta-sandwich consisting of two three-stranded sheets with topology B(decreasing), A(increasing), F(decreasing), and C(increasing), D(decreasing), E(increasing). Due to the uniqueness of the arrangement of the strands, the resulting fold was found to be novel. Residues that are highly conserved among the S27 proteins allowed identification of a structural motif of putative functional importance; a conserved hydrophobic patch may well play a pivotal role for functioning of S27 proteins, be it in archaeal or eukaryotic cells. The structure of human S27, which possesses a 26-residue amino-terminal extension when compared with the archaeal S27e, was modeled on the basis of two structural templates, S27e for the carboxy-terminal core and the amino-terminal segment of the archaeal ribosomal protein L37Ae for the extension. Remarkably, the electrostatic surface properties of archaeal and human proteins are predicted to be entirely different, pointing at either functional variations among archaeal and eukaryotic S27 proteins, or, assuming that the function remained invariant, to a concerted evolutionary change of the surface potential of proteins interacting with S27.  相似文献   

13.
14.
Ribosomal protein L27 is located near the peptidyltransferase center at the interface of ribosomal subunits, and is important for ribosomal assembly and function. We report the crystal structure of ribosomal protein L27 from Thermus thermophilus HB8, which was determined by the multiwavelength anomalous dispersion method and refined to an R-factor of 19.7% (R(free) = 23.6%) at 2.8 A resolution. The overall fold is an all beta-sheet hybrid. It consists of two sets of four-stranded beta-sheets formed around a well-defined hydrophobic core, with a highly positive charge on the protein surface. The structure of ribosomal protein L27 from T. thermophilus HB8 in the RNA-free form is investigated, and its functional roles in the ribosomal subunit are discussed.  相似文献   

15.
In the filamentous ascomycete Neurospora tetrasperma, a large (approx. 7 Mbp) region of suppressed recombination surrounds the mating-type (mat) locus. While the remainder of the genome is largely homoallelic, this region of recombinational suppression, extending over 1500 genes, is associated with sequence divergence. Here, we used microarrays to examine how the molecular phenotype of gene expression level is linked to this divergent region, and thus to the mating type. Culturing N. tetrasperma on agar media that induce sexual/female or vegetative/male tissue, we found 196 genes significantly differentially expressed between mat A and mat a mating types. Our data show that the genes exhibiting mat-linked expression are enriched in the region genetically linked to mating type, and sequence and expression divergence are positively correlated. Our results indicate that the phenotype of mat A strains is optimized for traits promoting sexual/female development and the phenotype of mat a strains for vegetative/male development. This discovery of differentially expressed genes associated with mating type provides a link between genotypic and phenotypic divergence in this taxon and illustrates a fungal analogue to sexual dimorphism found among animals and plants.  相似文献   

16.
Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis.  相似文献   

17.
The archaeal L7Ae and eukaryotic 15.5kD protein homologs are members of the L7Ae/15.5kD protein family that characteristically recognize K-turn motifs found in both archaeal and eukaryotic RNAs. In Archaea, the L7Ae protein uniquely binds the K-loop motif found in box C/D and H/ACA sRNAs, whereas the eukaryotic 15.5kD homolog is unable to recognize this variant K-turn RNA. Comparative sequence and structural analyses, coupled with amino acid replacement experiments, have demonstrated that five amino acids enable the archaeal L7Ae core protein to recognize and bind the K-loop motif. These signature residues are highly conserved in the archaeal L7Ae and eukaryotic 15.5kD homologs, but differ between the two domains of life. Interestingly, loss of K-loop binding by archaeal L7Ae does not disrupt C′/D′ RNP formation or RNA-guided nucleotide modification. L7Ae is still incorporated into the C′/D′ RNP despite its inability to bind the K-loop, thus indicating the importance of protein–protein interactions for RNP assembly and function. Finally, these five signature amino acids are distinct for each of the L7Ae/L30 family members, suggesting an evolutionary continuum of these RNA-binding proteins for recognition of the various K-turn motifs contained in their cognate RNAs.  相似文献   

18.
In this Extra View we comment on our recent work on Sudestada1 (Sud1), a Drosophila 2-oxoglutarate (2OG)-dependent dioxygenase that belongs to the Ribosomal Oxygenase (ROX) subfamily. Sud1 is required for normal growth in Drosophila, and is conserved in yeast and mammals. We reported that Sud1 hydroxylates the ribosomal protein S23 (RPS23), and that its loss of function restricts growth and provokes activation of the unfolded protein response, apoptosis and autophagy. In this Extra View we speculate on the role that RPS23 hydroxylation might play in stop codon recognition and on the possible link between Sud1 loss-of-function and activation of the Unfolded Protein Response, Stress Granules formation and growth impairment.  相似文献   

19.
TWINKLE is a mitochondrial DNA helicase playing an important role in mitochondrial DNA replication. In human, mutations in this gene cause progressive external ophtalmoplegia and mitochondrial DNA depletion syndrome-7. TWINKLE is well conserved among multicellular eukaryotes and is believed to be a key regulator of mitochondrial DNA copy number in mammals.  相似文献   

20.
The ribosomal protein S17E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. S17E is a 62-residue protein conserved in archaea and eukaryotes and has no counterparts in bacteria. Mammalian S17E is a phosphoprotein component of eukaryotic ribosomes. Archaeal S17E proteins range from 59 to 79 amino acids, and are about half the length of the eukaryotic homologs which have an additional C-terminal region. Here we report the three-dimensional solution structure of S17E. S17E folds into a small three-helix bundle strikingly similar to the FF domain of human HYPA/FBP11, a novel phosphopeptide-binding fold. S17E bears a conserved positively charged surface acting as a robust scaffold for molecular recognition. The structure of M. thermoautotrophicum S17E provides a template for homology modeling of eukaryotic S17E proteins in the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号