首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of the SIS process on heterogenous networks, where different local communities are connected by airlines, is studied. We suggest a new modeling technique for travelers movement, in which the movement does not affect the demographic parameters characterizing the metapopulation. A solution to the deterministic reaction-diffusion equations that emerges from this model on a general network is presented. A typical example of a heterogenous network, the star structure, is studied in detail both analytically and using agent-based simulations. The interplay between demographic stochasticity, spatial heterogeneity and the infection dynamics is shown to produce some counterintuitive effects. In particular it was found that, while movement always increases the chance of an outbreak, it may decrease the steady-state fraction of sick individuals. The importance of the modeling technique in estimating the outcomes of a vaccination campaign is demonstrated.  相似文献   

2.
3.
Contact network epidemiology is an approach to modeling the spread of infectious diseases that explicitly considers patterns of person-to-person contacts within a community. Contacts can be asymmetric, with a person more likely to infect one of their contacts than to become infected by that contact. This is true for some sexually transmitted diseases that are more easily caught by women than men during heterosexual encounters; and for severe infectious diseases that cause an average person to seek medical attention and thereby potentially infect health care workers (HCWs) who would not, in turn, have an opportunity to infect that average person. Here we use methods from percolation theory to develop a mathematical framework for predicting disease transmission through semi-directed contact networks in which some contacts are undirected-the probability of transmission is symmetric between individuals-and others are directed-transmission is possible only in one direction. We find that the probability of an epidemic and the expected fraction of a population infected during an epidemic can be different in semi-directed networks, in contrast to the routine assumption that these two quantities are equal. We furthermore demonstrate that these methods more accurately predict the vulnerability of HCWs and the efficacy of various hospital-based containment strategies during outbreaks of severe respiratory diseases.  相似文献   

4.
We consider a spatial model related to bond percolation for the spread of a disease that includes variation in the susceptibility to infection. We work on a lattice with random bond strengths and show that with strong heterogeneity, i.e. a wide range of variation of susceptibility, patchiness in the spread of the epidemic is very likely, and the criterion for epidemic outbreak depends strongly on the heterogeneity. These results are qualitatively different from those of standard models in epidemiology, but correspond to real effects. We suggest that heterogeneity in the epidemic will affect the phylogenetic distance distribution of the disease-causing organisms. We also investigate small world lattices, and show that the effects mentioned above are even stronger.  相似文献   

5.
One way to describe the spread of an infection on a network is by using the method of pair approximation. This method is a deterministic pair-based variant of the usual methods used to describe the progress of an epidemic in randomly mixing populations. However, although the ideas of pair approximation are intuitively clear, it is not straightforward to make all assumptions used explicit. Furthermore, in literature problems arise in defining basic quantities like the basic reproduction number R(0) and the real-time epidemic growth rate parameter r. We formulate the pair approximations and the needed assumptions explicitly. We discuss problems inherent to this method. Furthermore, we define a new reproduction number, similar to R(0) and a new real-time growth rate parameter similar to r. We illustrate the methods of the paper by an example for which we can compare the approximation of the reproduction number with exact results.  相似文献   

6.
One way to describe the spread of an infection on a network is by approximating the network by a random graph. However, the usual way of constructing a random graph does not give any control over the number of triangles in the graph, while these triangles will naturally arise in many networks (e.g. in social networks). In this paper, random graphs with a given degree distribution and a given expected number of triangles are constructed. By using these random graphs we analyze the spread of two types of infection on a network: infections with a fixed infectious period and infections for which an infective individual will infect all of its susceptible neighbors or none. These two types of infection can be used to give upper and lower bounds for R(0), the probability of extinction and other measures of dynamics of infections with more general infectious periods.  相似文献   

7.
Epidemic models currently play a central role in our attempts to understand and control infectious diseases. Here, we derive a model for the diffusion limit of stochastic susceptible-infectious-removed (SIR) epidemic dynamics on a heterogeneous network. Using this, we consider analytically the early asymptotic exponential growth phase of such epidemics, showing how the higher order moments of the network degree distribution enter into the stochastic behaviour of the epidemic. We find that the first three moments of the network degree distribution are needed to specify the variance in disease prevalence fully, meaning that the skewness of the degree distribution affects the variance of the prevalence of infection. We compare these asymptotic results to simulation and find a close agreement for city-sized populations.  相似文献   

8.

Background

Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an early warning system.

Methodology/Principal Findings

Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March–April) lagged the warmest temperature by 1–2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January–February–March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October–November–December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively.

Conclusions/Significance

The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue management in other countries.  相似文献   

9.
The effect of spatial correlations on the spread of infectious diseases was investigated using a stochastic susceptible-infective-recovered (SIR) model on complex networks. It was found that in addition to the reduction of the effective transmission rate, through the screening of infectives, spatial correlations have another major effect through the enhancement of stochastic fluctuations, which may become considerably larger than in the homogeneously mixed stochastic model. As a consequence, in finite spatially structured populations significant differences from the solutions of deterministic models are to be expected, since sizes even larger than those found for homogeneously mixed stochastic models are required for the effects of fluctuations to be negligible. Furthermore, time series of the (unforced) model provide patterns of recurrent epidemics with slightly irregular periods and realistic amplitudes, suggesting that stochastic models together with complex networks of contacts may be sufficient to describe the long-term dynamics of some diseases. The spatial effects were analysed quantitatively by modelling measles and pertussis, using a susceptible-exposed-infective-recovered (SEIR) model. Both the period and the spatial coherence of the epidemic peaks of pertussis are well described by the unforced model for realistic values of the parameters.  相似文献   

10.
Contact patterns in populations fundamentally influence the spread of infectious diseases. Current mathematical methods for epidemiological forecasting on networks largely assume that contacts between individuals are fixed, at least for the duration of an outbreak. In reality, contact patterns may be quite fluid, with individuals frequently making and breaking social or sexual relationships. Here, we develop a mathematical approach to predicting disease transmission on dynamic networks in which each individual has a characteristic behaviour (typical contact number), but the identities of their contacts change in time. We show that dynamic contact patterns shape epidemiological dynamics in ways that cannot be adequately captured in static network models or mass-action models. Our new model interpolates smoothly between static network models and mass-action models using a mixing parameter, thereby providing a bridge between disparate classes of epidemiological models. Using epidemiological and sexual contact data from an Atlanta high school, we demonstrate the application of this method for forecasting and controlling sexually transmitted disease outbreaks.  相似文献   

11.
12.
Analytical methods for predicting and exploring the dynamics of stochastic, spatially interacting populations have proven to have useful application in epidemiology and ecology. An important development has been the increasing interest in spatially explicit models, which require more advanced analytical techniques than the usual mean-field or mass-action approaches. The general principle is the derivation of differential equations describing the evolution of the expected population size and other statistics. As a result of spatial interactions no closed set of equations is obtained. Nevertheless, approximate solutions are possible using closure relations for truncation. Here we review and report recent progress on closure approximations applicable to lattice models with nearest-neighbour interactions, including cluster approximations and elaborations on the pair (or pairwise) approximation. This study is made in the context of an SIS model for plant-disease epidemics introduced in Filipe and Gibson (1998, Studying and approximating spatio-temporal models for epidemic spread and control, Phil. Trans. R. Soc. Lond. B 353, 2153–2162) of which the contact process [Harris, T. E. (1974), Contact interactions on a lattice, Ann. Prob. 2, 969] is a special case. The various methods of approximation are derived and explained and their predictions are compared and tested against simulation. The merits and limitations of the various approximations are discussed. A hybrid pairwise approximation is shown to provide the best predictions of transient and long-term, stationary behaviour over the whole parameter range of the model.  相似文献   

13.
14.
Over the years, there have been claims that evolution proceeds according to systematically different processes over different timescales and that protein evolution behaves in a non-Markovian manner. On the other hand, Markov models are fundamental to many applications in evolutionary studies. Apparent non-Markovian or time-dependent behavior has been attributed to influence of the genetic code at short timescales and dominance of physicochemical properties of the amino acids at long timescales. However, any long time period is simply the accumulation of many short time periods, and it remains unclear why evolution should appear to act systematically differently across the range of timescales studied. We show that the observed time-dependent behavior can be explained qualitatively by modeling protein sequence evolution as an aggregated Markov process (AMP): a time-homogeneous Markovian substitution model observed only at the level of the amino acids encoded by the protein-coding DNA sequence. The study of AMPs sheds new light on the relationship between amino acid-level and codon-level models of sequence evolution, and our results suggest that protein evolution should be modeled at the codon level rather than using amino acid substitution models.  相似文献   

15.
Shin YJ  Sayed AH  Shen X 《PloS one》2012,7(2):e31657
Biological systems are often treated as time-invariant by computational models that use fixed parameter values. In this study, we demonstrate that the behavior of the p53-MDM2 gene network in individual cells can be tracked using adaptive filtering algorithms and the resulting time-variant models can approximate experimental measurements more accurately than time-invariant models. Adaptive models with time-variant parameters can help reduce modeling complexity and can more realistically represent biological systems.  相似文献   

16.
The COVID-19 pandemic has highlighted the importance of reliable statistical models which, based on the available data, can provide accurate forecasts and impact analysis of alternative policy measures. Here we propose Bayesian time-dependent Poisson autoregressive models that include time-varying coefficients to estimate the effect of policy covariates on disease counts. The model is applied to the observed series of new positive cases in Italy and in the United States. The results suggest that our proposed models are capable of capturing nonlinear growth of disease counts. We also find that policy measures and, in particular, closure policies and the distribution of vaccines, lead to a significant reduction in disease counts in both countries.  相似文献   

17.
The process of infection during an epidemic can be envisaged as being transmitted via a network of routes represented by a contact network. Most differential equation models of epidemics are mean-field models. These contain none of the underlying spatial structure of the contact network. By extending the mean-field models to pair-level, some of the spatial structure can be contained in the model. Some networks of transmission such as river or transportation networks are clearly asymmetric, whereas others such as airborne infection can be regarded as symmetric. Pair-level models have been developed to describe symmetric contact networks. Here we report on work to develop a pair-level model that is also applicable to asymmetric contact networks. The procedure for closing the model at the level of pairs is discussed in detail. The model is compared against stochastic simulations of epidemics on asymmetric contact networks and against the predictions of the symmetric model on the same networks. DEFRA funded project FC1153  相似文献   

18.

Background

Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover.

Methods

We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models.

Results

We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration.

Conclusions

We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.
  相似文献   

19.
Duplication models for biological networks.   总被引:11,自引:0,他引:11  
Are biological networks different from other large complex networks? Both large biological and nonbiological networks exhibit power-law graphs (number of nodes with degree k, N(k) approximately k(-beta)), yet the exponents, beta, fall into different ranges. This may be because duplication of the information in the genome is a dominant evolutionary force in shaping biological networks (like gene regulatory networks and protein-protein interaction networks) and is fundamentally different from the mechanisms thought to dominate the growth of most nonbiological networks (such as the Internet). The preferential choice models used for nonbiological networks like web graphs can only produce power-law graphs with exponents greater than 2. We use combinatorial probabilistic methods to examine the evolution of graphs by node duplication processes and derive exact analytical relationships between the exponent of the power law and the parameters of the model. Both full duplication of nodes (with all their connections) as well as partial duplication (with only some connections) are analyzed. We demonstrate that partial duplication can produce power-law graphs with exponents less than 2, consistent with current data on biological networks. The power-law exponent for large graphs depends only on the growth process, not on the starting graph.  相似文献   

20.
Models for the spread of an SIS epidemic among a population consisting of m households, each containing n individuals, are considered and their behaviour is analysed under the practically relevant situation when m is large and n small. A threshold parameter R* is determined. For the stochastic model it is shown that the epidemic has a non-zero probability of taking off if and only if R* > 1, and the extension to unequal household sizes is also considered. For the deterministic model, with households of size 2, it is shown that if R* < or = 1 then the epidemic dies out, whilst if R* > 1 the epidemic settles down to an endemic equilibrium. The usual basic reproductive ratio R0 does not provide a good indicator for the behaviour of these household epidemic models unless the household size n is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号