首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of low activities of the monomeric Al species, Al3+, Al(OH)2 + and Al(OH)2+, on the peanut/Bradyrhizobium symbiosis were examined in solution culture. In flowing solution culture, growth of the host plant was depressed at activities ≥5 μM. Neither shoot dry weight, root dry weight nor root length were inhibited by 3 μM Al, an activity which reduced nodule number by 70%. Low nodule number was compensated for, at this activity, by an increase in weight per nodule. In non-flowing solution culture of similar composition, survival of a streptomycin resistant mutant of Bradyrhizobium spp. NC92 in the bulk solution or in the rhizosphere of peanut roots was unaffected by 20 μM Al. The site of infection by Bradyrhizobium was examined by scanning electron microscopy. Lateral root axils of plants exposed to ≥2 μM Al did not display the rosette of multicellular root hairs which is characteristic in normal plants. The detrimental effects of Al on nodulation appear to be related to structural changes at the site of infection which are observed at Al activities too low to cause any depression in growth of the host plant, including root length, and at activities of Al which do not affect survival of the free-living Bradyrhizobium.  相似文献   

2.
Mutations affecting the development of root symbiosis between legume plants (Fabaceae) and nodule bacteria (rhizobia) are often associated with pleiotropy. This might either primarily be caused by the mutation or develops as a physiological consequence of a changed nodule structure, number and activity. Three pleiotropic traits were revealed in the pea (Pisum sativum L.) mutant RisfixC which is of supernodulation/nitrate-tolerant symbiosis (Nts) type. They comprise shortened internodes, reduced shoot dry mass accumulation and increased nitrogen content in the root tissues when compared to the wild type. The changes were expressed in the same degree in asymbiotic and nodulated plants when the effect of symbiotic nitrogen on plant growth was abolished with a saturating nitrate level. Consequently, the pleiotropic traits are inherently associated with the mutation. In RisfixC, the pleiotropy coincided with the presumed absence of the systemic feedback factor regulating nodule number. However, no differences were detected in the comparison of nonnodulating mutant Risnod27 (sym8) with the wild type and of inoculated with noninoculated wild-type plants although these pairs also differ in the presence of the systemic factor. Therefore, the pathway leading from the RisfixC mutant product to pleiotropic changes appears to be independent of systemic nodule number regulation. Implications for the genetic improvement of growth and yield parameters of supernodulating breeding lines are discussed.  相似文献   

3.
In this study, we focused on the effect of glutamine synthetase (GSI) activity in Mesorhizobium loti on the symbiosis between the host plant, Lotus japonicus, and the bacteroids. We used a signature-tagged mutant of M. loti (STM30) with a transposon inserted into the GSI (mll0343) gene. The L. japonicus plants inoculated with STM30 had significantly more nodules, and the occurrence of senesced nodules was much higher than in plants inoculated with the wild-type. The acetylene reduction activity (ARA) per nodule inoculated with STM30 was lowered compared to the control. Also, the concentration of chlorophyll, glutamine, and asparagine in leaves of STM30-infected plants was found to be reduced. Taken together, these data demonstrate that a GSI deficiency in M. loti differentially affects legume–rhizobia symbiosis by modifying nodule development and metabolic processes.  相似文献   

4.
5.
6.
Medicago truncatula represents a model plant species for understanding legume–bacteria interactions. M. truncatula roots form a specific root–nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via “Strategy I,” which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.  相似文献   

7.
Nodulation, acetylene reduction activity, dry matter accumulation, and total nitrogen accumulation by nodulated plants growing in a nitrogen-free culture system were used to compare the symbiotic effectiveness of the fast-growing Rhizobium fredii USDA 191 with that of the slow-growing Bradyrhizobium japonicum USDA 110 in symbiosis with five soybean (Glycine max (L.) Merr.) cultivars. Measurement of the amount of nitrogen accumulated during a 20-day period of vegetative growth (28 to 48 days after transplanting) showed that USDA 110 fixed 3.7, 39.1, 4.6, and 57.3 times more N2 than did USDA 191 with cultivars Pickett 71, Harosoy 63, Lee, and Ransom as host plants, respectively. With the unimproved Peking cultivar as the host plant, USDA 191 fixed 3.3 times more N2 than did the USDA 110 during the 20-day period. The superior N2 fixation capability of USDA 110 with the four North American cultivars as hosts resulted primarily from higher nitrogenase activity per unit nodule mass (specific acetylene reduction activity) and higher nodule mass per plant. The higher N2-fixation capability of USDA 191 with the Peking cultivar as host resulted primarily from higher nodule mass per plant, which was associated with higher nodule numbers. There was significant variation in the N2-fixation capabilities of the four North American cultivar-USDA 191 symbioses. Pickett 71 and Lee cultivars fixed significantly more N2 in symbiosis with USDA 191 than did the Harosoy 63 and Ransom cultivars. This quantitative variation in N2-fixation capability suggests that the total incompatibility (effectiveness of nodulation and efficiency of N2 fixation) of host soybean plants and R. fredii strains is regulated by more than one host plant gene. These results indicate that it would not be prudent to introduce R. fredii strains into North American agricultural systems until more efficient N2-fixing symbioses between North American cultivars and these fast-growing strains can be developed. When inoculum containing equal numbers of USDA 191 and of strain USDA 110 was applied to the unimproved Peking cultivar in Perlite pot culture, 85% of the 160 nodules tested were occupied by USDA 191. With Lee and Ransom cultivars, 99 and 85% of 140 and 96 nodules tested, respectively, were occupied by USDA 110.  相似文献   

8.
9.
Leguminous plants have the ability to make their own nitrogen fertilizer by forming a root nodule symbiosis with nitrogen-fixing soil bacteria, collectively called rhizobia. This biological process plays a critical role in sustainable agriculture because it reduces the need for external nitrogen input. One remarkable property of legume–rhizobial symbiosis is its high level of specificity, which occurs at both inter- and intra-species levels and takes place at multiple phases of the interaction, ranging from initial bacterial infection and nodulation to late nodule development associated with nitrogen fixation. Knowledge of the molecular mechanisms controlling symbiotic specificity will facilitate the development of new crop varieties with improved agronomic potential for nitrogen-fixing symbiosis. In this report, we describe fine mapping of the Rj4 locus, a gene controlling nodulation specificity in soybean (Glycine max). The Rj4 allele prevents the host plant from nodulation with many strains of Bradyrhizobium elkanii, which are frequently present in soils of the southeastern USA. Since B. elkanii strains are poor symbiotic partners of soybean, cultivars containing an Rj4 allele are considered favorable. We have delimited the Rj4 locus within a 57-kb genomic region on soybean chromosome 1. The data reported here will facilitate positional cloning of the Rj4 gene and the development of genetic markers for marker-assisted selection in soybean.  相似文献   

10.
11.
Leguminous plants develop root nodules in symbiosis with soil rhizobia. Nodule formation occurs following rhizobial infection of the host root that induces dedifferentiation of some cortical cells and the initiation of a new developmental program to form nodule primordia. In a recent study, we identified a novel gene, TRICOT (TCO), that acts as a positive regulator of nodulation in Lotus japonicus. In addition to its role in nodulation, tco mutant plants display pleiotropic defects including abnormal shoot apical meristem formation. Here, we investigated the effect of the tco mutation on nodulation using a grafting approach. The results strongly indicate that the nodulation-deficient phenotype of the mutant results from malfunction of the TCO gene in the root.  相似文献   

12.
Nitrogen is generally considered one of the major limiting nutrients in plant growth. The biological process responsible for reduction of molecular nitrogen into ammonia is referred to as nitrogen fixation. A wide diversity of nitrogen-fixing bacterial species belonging to most phyla of the Bacteria domain have the capacity to colonize the rhizosphere and to interact with plants. Leguminous and actinorhizal plants can obtain their nitrogen by association with rhizobia or Frankia via differentiation on their respective host plants of a specialized organ, the root nodule. Other symbiotic associations involve heterocystous cyanobacteria, while increasing numbers of nitrogen-fixing species have been identified as colonizing the root surface and, in some cases, the root interior of a variety of cereal crops and pasture grasses. Basic and advanced aspects of these associations are covered in this review.  相似文献   

13.
The effects of modifying boron (B) and calcium (Ca2+) concentrations on the establishment and development of rhizobial symbiosis in Pisum sativum plants grown under salt stress were investigated. Salinity almost completely inhibited the nodulation of pea plants by Rhizobium leguminosarum bv. viciae 3841. This effect was prevented by addition of Ca2+ during plant growth. The capacity of root exudates derived from salt‐treated plants to induce Rhizobium nod genes was not significantly decreased. However, bacterial adsorption to roots was highly inhibited in plants grown with 75 mM NaCl. Moreover, R. leguminosarum 3841 did not grow in minimal media containing such salt concentration. High Ca2+ levels enhanced both rhizobial growth and adsorption to roots, and increased nodule number in the presence of high salt. Nevertheless, the nodules developed were not functional unless the B concentration was also increased. Because B has a strong effect on infection and cell invasion, these processes were investigated by fluorescence microscopy in pea nodules harbouring a R. leguminosarum strain that expresses green fluorescent protein. Salt‐stressed plants had empty nodules and only those treated with high B and high Ca2+ developed infection threads and exhibited enhanced cell and tissue invasion by Rhizobium. Overall, the results indicate that Ca2+ promotes nodulation and B nodule development leading to an increase of salt tolerance of nodulated legumes.  相似文献   

14.
Rhizobia have a versatile catabolism that allows them to compete successfully with other microorganisms for nutrients in the soil and in the rhizosphere of their respective host plants. In this study, Bradyrhizobium japonicum USDA 110 was found to be able to utilize oxalate as the sole carbon source. A proteome analysis of cells grown in minimal medium containing arabinose suggested that oxalate oxidation extends the arabinose degradation branch via glycolaldehyde. A mutant of the key pathway genes oxc (for oxalyl-coenzyme A decarboxylase) and frc (for formyl-coenzyme A transferase) was constructed and shown to be (i) impaired in growth on arabinose and (ii) unable to grow on oxalate. Oxalate was detected in roots and, at elevated levels, in root nodules of four different B. japonicum host plants. Mixed-inoculation experiments with wild-type and oxc-frc mutant cells revealed that oxalotrophy might be a beneficial trait of B. japonicum at some stage during legume root nodule colonization.  相似文献   

15.
Strigolactones are multifunctional molecules involved in several processes outside and within the plant. As signalling molecules in the rhizosphere, they favour the establishment of arbuscular mycorrhizal symbiosis, but they also act as host detection cues for root parasitic plants. As phytohormones, they are involved in the regulation of plant architecture, adventitious rooting, secondary growth and reproductive development, and novel roles are emerging continuously. In the present study, the possible involvement of strigolactones in plant defence responses was investigated. For this purpose, the resistance/susceptibility of the strigolactone‐deficient tomato mutant Slccd8 against the foliar fungal pathogens Botrytis cinerea and Alternaria alternata was assessed. Slccd8 was more susceptible to both pathogens, pointing to a new role for strigolactones in plant defence. A reduction in the content of the defence‐related hormones jasmonic acid, salicylic acid and abscisic acid was detected by high‐performance liquid chromatography coupled to tandem mass spectrometry in the Slccd8 mutant, suggesting that hormone homeostasis is altered in the mutant. Moreover, the expression level of the jasmonate‐dependent gene PinII, involved in the resistance of tomato to B. cinerea, was lower than in the corresponding wild‐type. We propose here that strigolactones play a role in the regulation of plant defences through their interaction with other defence‐related hormones, especially with the jasmonic acid signalling pathway.  相似文献   

16.
17.
Nitrogen-fixing root nodules develop on legumes as a result of an interaction between host plants and soil bacteria collectively referred to as rhizobia. The organogenic process resulting in nodule development is triggered by the bacterial microsymbiont, but genetically controlled by the host plant genome. Using T-DNA insertion as a tool to identify novel plant genes that regulate nodule ontogeny, we have identified two putatively tagged symbiotic loci, Ljsym8 and Ljsym13, in the diploid legume Lotus japonicus. The sym8 mutants are arrested during infection by the bacteria early in the developmental process. The sym13 mutants are arrested in the final stages of infection, and ineffective nodules are formed. These two plant mutant lines were identified in progeny from 1112 primary transformants obtained after Agrobacterium tumefaciens T-DNA-mediated transformation of L. japonicus and subsequent screening for defects in the symbiosis with Mesorhizobium loti. Additional nontagged mutants arrested at different developmental stages were also identified and genetic complementation tests assigned all the mutations to 16 monogenic symbiotic loci segregating recessive mutant alleles. In the screen reported here independent symbiotic loci thus appeared with a frequency of ~1.5%, suggesting that a relatively large set of genes is required for the symbiotic interaction.  相似文献   

18.
Preinfection events in legume-Rhizobium symbiosis were analyzed by studying the different nodulation behaviors of two rhizobial strains in cowpeas (Vigna sinensis). Log-phase cultures of Rhizobium sp. strain 1001, an isolate from the plant nodule, initiated host responses leading to infection within 2 h after inoculation, whereas log-phase cultures of Rhizobium sp. strain 32H1 took at least 7 h to trigger a discernible response. The delay observed with strain 32H1 could be eliminated by incubating the rhizobial suspension, before inoculation, for 4.5 h either in the cowpea rhizosphere/rhizoplane condition or in the root exudate of cowpea plants, grown without NH4+ in the rooting medium. The delay could not be eliminated by incubating the rhizobial suspension in the rooting medium of plants grown in the presence of 5 mM NH4+, indicating that there is a regulatory role of combined nitrogen in triggering preinfection events by the legume. The substance(s) in the root exudate which elicited the faster nodulation response by Rhizobium sp. strain 32H1 could be separated into a high-molecular-weight fraction by Sephadex G-100 gel filtration. The data support the notion that legume roots release substances that favor the development of rhizobial features essential for infection and nodulation.  相似文献   

19.
Strigolactones promote nodulation in pea   总被引:2,自引:0,他引:2  
Foo E  Davies NW 《Planta》2011,234(5):1073-1081
Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.  相似文献   

20.
More ethanol soluble material (carbohydrate and amino nitrogen) was found in both host cell and bacteroid components of Phaseolus vulgaris nodules from plants grown at 28 W/m2 than from plants grown at 7 W/m2. The range of compounds identified was similar at the two irradiances. On feeding 14CO2 to the plant tops at either irradiance the labelling patterns of carbohydrates and organic acids in the nodule host cells and bacteroids suggested that any or all of the following substances could be donated by the host to the bacteroids for general metabolism: sucrose, fructose, glucose, an unidentified carbohydrate, malic acid and an organic acid co-chromatographing with 6-phosphogluconate. Distribution and labelling patterns of nodule amino compounds were consistent with the hypothesis that ammonia is the primary product of nitrogen fixation within bacteroids, and that this ammonia is transported to host cells for assimilation, initially into glutamine and glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号