首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Human subjects were exposed to partial- and whole-body heating and cooling in a controlled environmental chamber to quantify physiological and subjective responses to thermal asymmetries and transients.

2. Skin temperatures, core temperature, thermal sensation, and comfort responses were collected for 19 local body parts and for the whole body.

3. Core temperature increased in response to skin cooling and decreased in response to skin heating.

4. Hand and finger temperatures fluctuated significantly when the body was near a neutral thermal state.

5. When using a computer mouse in a cool environment, the skin temperature of the hand using the mouse was observed to be 2–3 °C lower than the unencumbered hand.  相似文献   


2.
The purpose of this study was to determine the thermal comfort requirements for steps in temperature. Thirty male subjects were exposed for 50 min to a 34 or 37°C condition, and then quickly transferred to a cooler environment of 31, 28, 25, and 22°C for 50 min. Mean skin temperature was continuously measured, and the subjects reported their thermal sensation and comfort sensation every 2 min. Just after the step changes, the mean skin temperature immediately decreased, while the thermal sensation overshot and gradually rose again. Both the skin temperature and the thermal sensation seemed to reach a constant level within about 20 min. However, there were differences in the mean skin temperature and the neutral temperature derived from the correlation between the ambient temperature and the thermal sensation even 50 min after the steps, due to the thermal environmental condition before the changes of temperature. The change in the neutral temperature with time was expressed as two attenuating equations. These equations indicate that there is an obvious difference between the neutral temperatures due to the thermal condition before step changes, and that it takes >50 min after the step changes to reach the steady state. It is expected that these equations predict in quantitative terms the thermal comfort requirements within a given experimental condition.  相似文献   

3.
Thermal sensation and distribution of skin temperatures in persons exercising at 36.5 W on a bicycle ergometer and resting in a cool environment (10 degrees C) in two different clothings, one with the insulation mainly over the trunk (1.22 clo), and one with well insulated limbs (1.67 clo), were studied. Their general thermal sensations varied from slightly warm to slightly cool. The placing of the insulation had a decisive influence on skin temperature distribution, so that skin temperature was always high in well-insulated areas. When the insulation was placed over the limbs, a greater amount of heat was lost than if a similar insulation was placed on the trunk. Neither Tsk nor skin temperature distribution correlated with general thermal sensation. Instead, mean body temperature seemed to be the determinant of general thermal sensation in these conditions. The best prediction of general thermal sensation was obtained by adding Tre with a weighting factor of 0.8-0.9 and Tsk with a weighting factor of 0.1-0.2.  相似文献   

4.
The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold–hot) and the whole body thermal comfort (comfortable–uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The acceptability raised the mean skin temperature even for thermal environment conditions in which ETFe was high.  相似文献   

5.

1. 1. In order to investigate the thermoregulatory responses to the non-uniform thermal environment of the human body, the effects of cooling 10 different body regions were compared by circulating cool water to the neck, breast, back, loin, upper-arms, lower-arms, hands, thighs, legs and feet, respectively. Tympanic temperature, regional (11 sites) and mean skin temperature, and the thermal sensations were measured during experiment in which 30 min local coolings were applied on 5 female students in a climatic chamber controlled at 30°C and 50% r.h.

2. 2. The skin temperature beneath the cooling pad decreased in the order of arms, legs, hands and feet, and trunk.

3. 3. The temperature drop was significantly correlated with the thermal sensation of the region itself.

4. 4. On the other hand, the tympanic temperature increased once by any local cooling. The increase of it was correlated with the change of the general thermal sensation.

5. 5. Results of principal component analysis of skin temperature showed that the peripheral cooling affected the skin temperature in the limited peripheral regions, while the effects of cooling of the breast and the back extended to both the central and peripheral.

Author Keywords: Local cooling; skin temperature; tympanic temperature; thermal sensation; principal component analysis  相似文献   


6.
Focusing on the understanding and the estimation of the biometeorological conditions during summer in outdoor places, a field study was conducted in July 2010 in Athens, Greece over 6 days at three different sites: Syntagma Square, Ermou Street and Flisvos coast. Thermo-physiological measurements of five subjects were carried out from morning to evening for each site, simultaneously with meteorological measurements and subjective assessments of thermal sensation reported by questionnaires. The thermo-physiological variables measured were skin temperature, heat flux and metabolic heat production, while meteorological measurements included air temperature, relative humidity, wind speed, globe temperature, ground surface temperature and global radiation. The possible relation of skin temperature with the meteorological parameters was examined. Theoretical values of mean skin temperature and mean radiant temperature were estimated applying the MENEX model and were compared with the measured values. Two biometeorological indices, thermal sensation (TS) and heat load (HL)—were calculated in order to compare the predicted thermal sensation with the actual thermal vote. The theoretically estimated values of skin temperature were underestimated in relation to the measured values, while the theoretical model of mean radiant temperature was more sensitive to variations of solar radiation compared to the experimental values. TS index underestimated the thermal sensation of the five subjects when their thermal vote was ‘hot’ or ‘very hot’ and overestimated thermal sensation in the case of ‘neutral’. The HL index predicted with greater accuracy thermal sensation tending to overestimate the thermal sensation of the subjects.  相似文献   

7.
Spaceflight and its bed rest analog impair thermoregulatory responses, including elevated core temperature observed at rest and during exercise. Natural air flow has been found to increase cold sensation significantly compared to artificial constant air flow (CAF). The present study tested the hypothesis that simulated natural air flow (SNAF) ventilation would ameliorate impaired thermoregulatory function to a greater extent than CAF under simulated microgravity conditions. Seven healthy males underwent 30 days of −6° head-down bed rest (HDBR). During pre-HDBR and the day 29 of HDBR (HDBR 29), the subjects were exposed to three air flow patterns at 23 °C while in a supine posture: a still air flow control (CON), CAF, and SNAF. The mean air velocity of the latter two patterns was 0.2 m/s. Subjective perception of the thermal environment was recorded by thermal sensation vote (TSV), and rectal temperature (Tre), skin temperature (Tsk), and cutaneous vascular conductance (CVC) were also measured during the sessions. Tre was significantly elevated after 29 days of HDBR and decreased to a greater extent in SNAF than in CAF on HDBR 29. However, there was no significant difference between Tre in SNAF on HDBR 29 and that in CON on pre-HDBR. Mean Tsk, CVC, and TSV in SNAF were also significantly lower than those in CAF on HDBR 29. Moreover, TSV was close to ‘neutral’ under SNAF on HDBR 29. These data indicate that simulated natural air movement might be more effective than constant air movement at preserving core temperature at a thermoneutral ambient temperature during HDBR.  相似文献   

8.
To alleviate worker's thermal discomfort in a moderately hot environment, a new cooling vest was designed and proposed in this paper. To investigate the effect of the cooling vest and to collect the knowledge for the design of comfortable cooling vest, subjective experiments were conducted. Two kinds of cooling vests, the new one and the commercially available one, were used for comparison. The new cooling vest had more insulation and its surface temperature was higher than the commercially available one. Experiments were performed in the climatic chamber where operative temperature was controlled at 30.2 degrees C and relative humidity was at 37% under still air. In addition, experiment without cooling vest was carried out as a control condition. The results obtained in these experiments were as follow: 1) By wearing both types of cooling vest, the whole body thermal sensation was closer to the neutral conditions than those without cooling vest. This effect was estimated to be equal to the 5.7 degrees C decrement of operative temperature. The subjects felt more comfortable with the cooling vest than without it. They felt more thermally acceptable than that without cooling vest. Wearing the cooling vest was useful to decrease the sweating sensation. 2) The local discomfort was observed when the local thermal sensation was "cool" approximately "cold" with the cooling vest. 3) The new cooling vest kept the skin temperature at chest at about 32.6 degrees C. On the other hand, by wearing the commercially available one, it lowered to about 31.1 degrees C. By wearing the new cooling vest, there was a tendency that local thermal sensation vote was higher and local comfort sensation vote was more comfortable than those of the condition wearing the commercially available one. It is important for the design of a comfortable cooling garment to prevent over-cool down from the body.  相似文献   

9.
All biological bodies live in a thermal environment with the human body as no exception, where skin is the interface with protecting function. When the temperature moves out of normal physiological range, skin fails to protect and pain sensation is evocated. Skin thermal pain is one of the most common problems for humans in everyday life as well as in thermal therapeutic treatments. Nocicetors (special receptor for pain) in skin play an important role in this process, converting the energy from external noxious thermal stimulus into electrical energy via nerve impulses. However, the underlying mechanisms of nociceptors are poorly understood and there have been limited efforts to model the transduction process. In this paper, a model of nociceptor transduction in skin thermal pain is developed in order to build direct relationship between stimuli and neural response, which incorporates a skin thermomechanical model for the calculation of temperature, damage and thermal stress at the location of nociceptor and a revised Hodgkin-Huxley form model for frequency modulation. The model qualitatively reproduces measured relationship between spike rate and temperature. With the addition of chemical and mechanical components, the model can reproduce the continuing perception of pain after temperature has returned to normal. The model can also predict differences in nociceptor activity as a function of nociceptor depth in skin tissue.  相似文献   

10.
The effects of solar radiation on thermal comfort   总被引:1,自引:0,他引:1  
The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm−2. In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm−2 on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm−2 of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0±0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (tsk) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm−2. The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.  相似文献   

11.
A mathematical model for predicting human thermal and regulatory responses in cold, cool, neutral, warm, and hot environments has been developed and validated. The multi-segmental passive system, which models the dynamic heat transport within the body and the heat exchange between body parts and the environment, is discussed elsewhere. This paper is concerned with the development of the active system, which simulates the regulatory responses of shivering, sweating, and peripheral vasomotion of unacclimatised subjects. Following a comprehensive literature review, 26 independent experiments were selected that were designed to provoke each of these responses in different circumstances. Regression analysis revealed that skin and head core temperature affect regulatory responses in a non-linear fashion. A further signal, i.e. the rate of change of the mean skin temperature weighted by the skin temperature error signal, was identified as governing the dynamics of thermoregulatory processes in the cold. Verification and validation work was carried out using experimental data obtained from 90 exposures covering a range of steady and transient ambient temperatures between 5°C and 50°C and exercise intensities between 46 W/m2 and 600 W/m2. Good general agreement with measured data was obtained for regulatory responses, internal temperatures, and the mean and local skin temperatures of unacclimatised humans for the whole spectrum of climatic conditions and for different activity levels. Received: 20 November 2000 / Revised: 24 April 2001 / Accepted: 14 May 2001  相似文献   

12.
Seasonal variations of human thermal characteristics were inspected in thermal comfort and when constantly indoors. Metabolic rate, tympanic temperature, skin temperature, body fat, body weight and thermal sensation were measured under identical thermal conditions in a chamber over the course of one year. Experiments were carried out for each subject in both summer and winter. Six subjects were measured 35 times in summer and 45 times in winter. one subject was measured weekly for 14 months. Measurements for analyses were taken 40-60 min after entrance into the chamber. Results revealed the following. 1) For all subjects, the metabolic rate, tympanic temperature and body fat were lower in summer than in winter; thigh skin temperatures were higher in summer than in winter. The averaged individual ratio of seasonal difference was 11.9% for metabolic rate, 14.9% for body fat, 1.8% for thigh temperature and 0.53% for tympanic temperature. Seasonal differences of about 10% in metabolic rate were maintained in this study. 2) Seasonal variations of the variables were examined for phase relationships against the outdoor temperature. 2-1) Metabolic rate, thermal sensation, body weight and body fat changed in reverse phase, whereas skin temperature was in-phase. 2-2) Skin temperature lagged by about one month in both summer and winter. Body fat also lagged by about one month in summer, but corresponded to the phase in winter. Metabolic rates were also in-phase in winter but led about three months in summer. Thermal sensations lagged by about three months in winter but were in-phase in summer. Body weight was in-phase in summer and winter. 2-3) Summer disorders were observed particularly in seasonal variations of metabolic rates, tympanic temperature, skin temperatures, and thermal sensation, thereby suggesting that the effect of temperature exposure was altered by air-conditioner use.  相似文献   

13.
This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects were alternately seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise or decline immediately (within 1 min) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15–20 min under constant activity, subjective thermal responses approximated the steady-state response. The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10–5 min 25% and during the prior 20–10 min 10%.  相似文献   

14.

1. 1. 10 elderly and 10 college-aged females served as subjects in cold and heat environments. The subjects changed into the standard clothing (0.63 clo), and stayed in the neutral environment (25°C) for 23 min, thereafter they were exposed to the cold (10°C) or hot (35°C) environment for 49 min.

2. 2. Then they returned to the neutral environment, and stayed there for 47 min. Oral temperature, skin temperatures at 10 sites, blood pressure and thermal sensation were measured during the experiments.

3. 3. In the cold environment, the elderly could not reduce heat loss by vasoconstriction as did young people, and their blood pressures increased more rapidly than in young people. In the hot environment, the elderly could not promote heat loss by vasodilation as did young people. Moreover, there is a delayed sensitivity to cold for the elderly. Therefore, in the houses of the elderly, it is important to have heating and cooling systems which also includes the areas where the people do not stay for a long period of time (e.g. toilet, passageways).

Author Keywords: Cold; heat; body temperature; thermal sensation; elderly  相似文献   


15.
Pain sensation has been studied extensively, over a range of scales, from the molecular level to the entire human neural system. Thermal stimulation of pain has been widely used in the study of pain sensation. Skin thermal pain is induced through both direct (an increase/decrease in temperature) and indirect (thermomechanical and thermochemical) ways, and is governed by complicated thermomechanical–chemical–neurophysiologic responses. This paper is focused on the theoretical modeling of the underlying mechanisms in the process of skin thermal pain. A holistic model has been developed, which is composed of three sub-models, namely, transduction, transmission, and modulation and perception. The model can contribute to the understanding of thermally related pain phenomena in skin tissue and to improvements in a range of thermal therapeutic methods.  相似文献   

16.

1. 1. Seven thermal conditions were imposed on male sitting subjects (slightly clothed: 0.6 clo).

2. 2. A thermal mannikin was also used to determine the exact operative temperature, T0.

3. 3. Conditions were: uniform (UN: all parameters at 24.5°C, air velocity at 0.15 ms−1), heated ceiling (HC at 45°C), heated floor (HF at 34°C), cold floor (CF at 14°C), two conditions of one cold wall at 6°C (CW1 and CW2 respectively with and without air temperature compensation) and increased air velocity (AV at 0.4 ms−1).

4. 4. Local skin temperatures and answers to questionnaires were obtained.

5. 5. Skin temperature variations were affected by conditions and slight T0 changes.

6. 6. Comfort judgments were fairly well related to T0, especially when expressed as differences between actual non-uniform environment and the uniform one.

7. 7. It is concluded that, in case of non-uniform environments close to thermoneutral zone, thermal comfort or discomfort reflects the climate alterations better than the thermal sensation does.

Author Keywords: Skin temperature; thermal sensation; comfort; climate heterogeneity  相似文献   


17.
The use of R-R interval and the coefficient of variation in R-R intervals (CVR-R) for the evaluation of thermal comfort was investigated. The experiments were carried out with ten male subjects but data from one were excluded from the analysis. Thermal sensation, comfort, and tolerance of environmental conditions were reported and mean skin temperature, R-R interval and CVR-R were monitored during a 3 h period in a climatic chamber with the operative temperature set at 26, 20, or 30° C. Relative humidity was maintained at ca. 50% in each case. At the operative temperature of 20° C, the mean skin temperature was significantly lower, the cold sensation was significantly more intense, and discomfort was significantly greater than at 26° C and R-R interval was increased significantly. Seven of the nine subjects were unable to tolerate this thermal environment. The R-R interval and CVR-R were increased in five and four of those seven subjects, respectively. At the operative temperature of 30° C, the mean skin temperature was significantly higher, and the sensation of warmth was significantly more intense than at 26° C. Seven of the nine subjects felt discomfort, and four of the seven reported an inability to tolerate this thermal environment. The R-R interval and CVR-R were decreased in four and three of these four subjects, respectively. At the operative temperature of 20° C CVR-R was significantly greater than that at 30° C. Together with the subjective indices, R-R interval and CVR-R are considered worthy of further evaluation as objective indications of the effect on people of the thermal environment.  相似文献   

18.
To examine the disease state of cold constitution, physiological measurements of the foot were conducted by investigating thermal sensations under an environmental condition of 25 degrees C-26 degrees C (neutral temperature) in 29 young women with and without cold constitution. The subjects were classified into 3 groups according to their experiences with cold constitution: cold constitution, intermediate, and normal groups. Foot skin temperature was measured by thermography. Thermal sensations were measured on the dorsum of the left foot using a thermal stimulator. Cold and warm spots on the dorsum of the right foot were ascertained. Thermal stimulation was delivered by a copper probe. No significant differences in foot skin temperature among these 3 groups were identified as measured in a laboratory under neutral temperature conditions. However, the mean warm sensation threshold was +6.3+/-1.09 degrees C (mean+/-SEM) for the cold constitution group (n=14), +3.4+/-2.10 degrees C (mean+/-SEM) for the intermediate group (n=7), and -0.25+/-1.96 degrees C (mean+/-SEM) for the normal group (n=6). The difference was significant between the cold constitution and normal groups. No significant differences among the 3 groups were found in the cold sensation threshold. This may be attributable to the distribution of thermal receptors and to chronically reduced blood flow in subcutaneous tissues, where the skin temperature receptors responsible for temperature sensation are located.  相似文献   

19.
This study assessed the performance of the COMFA outdoor thermal comfort model on subjects performing moderate to vigorous physical activity. Field tests were conducted on 27 subjects performing 30 min of steady-state activity (walking, running, and cycling) in an outdoor environment. The predicted COMFA budgets were compared to the actual thermal sensation (ATS) votes provided by participants during each 5-min interval. The results revealed a normal distribution in the subjects’ ATS votes, with 82% of votes received in categories 0 (neutral) to +2 (warm). The ATS votes were significantly dependent upon sex, air temperature, short and long-wave radiation, wind speed, and metabolic activity rate. There was a significant positive correlation between the ATS and predicted budgets (Spearman’s rho?=?0.574, P?<?0.01). However, the predicted budgets did not display a normal distribution, and the model produced erroneous estimates of the heat and moisture exchange between the human body and the ambient environment in 6% of the cases.  相似文献   

20.
This paper presents the comparative analysis between the findings from two field surveys of human thermal conditions in outdoor urban spaces during the summer season. The first survey was carried out from August 2010 to May 2011 in Singapore and the second survey was carried out from June 2010 to August 2010 in Changsha, China. The physiologically equivalent temperature (PET) was utilized as the thermal index to assess the thermal conditions. Differences were found between the two city respondents in terms of thermal sensation, humidity sensation, and wind speed sensation. No big difference was found between the two city respondents regarding the sun sensation. The two city respondents had similar neutral PET of 28.1 °C for Singapore and 27.9 °C for Changsha, respectively. However, Singapore respondents were more sensitive to PET change than Changsha respondents and the acceptable PET range for Changsha respondents was wider than that for Singapore respondents. Besides, the two city respondents had different thermal expectations with the preferred PET of 25.2 °C and 22.1 °C for Singapore and Changsha, respectively. The results also reveal that Changsha respondents were more tolerant than Singapore respondents under hot conditions. Finally, two regression models were proposed for Singapore and Changsha to predict the human thermal sensation in a given outdoor thermal environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号