首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monosaccharides capable of serving as nutrients for the soil bacterium Agrobacterium tumefaciens are also inducers of the vir regulon present in the tumor-inducing (Ti) plasmid of this plant pathogen. One such monosaccharide is galacturonate, the predominant monomer of pectin found in plant cell walls. This ligand is recognized by the periplasmic sugar binding protein ChvE, which interacts with the VirA histidine kinase that controls vir gene expression. Although ChvE is also a member of the ChvE-MmsAB ABC transporter involved in the utilization of many neutral sugars, it is not involved in galacturonate utilization. In this study, a putative tripartite ATP-independent periplasmic (TRAP) transporter, GaaPQM, is shown to be essential for the utilization of galacturonic acid; we show that residue R169 in the predicted sugar binding site of the GaaP is required for activity. The gene upstream of gaaPQM (gaaR) encodes a member of the GntR family of regulators. GaaR is shown to repress the expression of gaaPQM, and the repression is relieved in the presence of the substrate for GaaPQM. Moreover, GaaR is shown to bind putative promoter regions in the sequences required for galacturonic acid utilization. Finally, A. tumefaciens strains carrying a deletion of gaaPQM are more sensitive to galacturonate as an inducer of vir gene expression, while the overexpression of gaaPQM results in strains being less sensitive to this vir inducer. This supports a model in which transporter activity is crucial in ensuring that vir gene expression occurs only at sites of high ligand concentration, such as those at a plant wound site.  相似文献   

2.
Zhao J  Binns AN 《Journal of bacteriology》2011,193(23):6586-6596
The chvE-gguABC operon plays a critical role in both virulence and sugar utilization through the activities of the periplasmic ChvE protein, which binds to a variety of sugars. The roles of the GguA, GguB, and GguC are not known. While GguA and GguB are homologous to bacterial ABC transporters, earlier genetic analysis indicated that they were not necessary for utilization of sugars as the sole carbon source. To further examine this issue, in-frame deletions were constructed separately for each of the three genes. Our growth analysis clearly indicated that GguA and GguB play a role in sugar utilization and strongly suggests that GguAB constitute an ABC transporter with a wide range of substrates, including L-arabinose, D-fucose, D-galactose, D-glucose, and D-xylose. Site-directed mutagenesis showed that a Walker A motif was vital to the function of GguA. We therefore propose renaming gguAB as mmsAB, for multiple monosaccharide transport. A gguC deletion affected growth only on L-arabinose medium, suggesting that gguC encodes an enzyme specific to L-arabinose metabolism, and this gene was renamed araD1. Results from bioinformatics and experimental analyses indicate that Agrobacterium tumefaciens uses a pathway involving nonphosphorylated intermediates to catabolize L-arabinose via an L-arabinose dehydrogenase, AraA(At), encoded at the Atu1113 locus.  相似文献   

3.
The widespread utilization of sugars by microbes is reflected in the diversity and multiplicity of cellular transporters used to acquire these compounds from the environment. The model bacterium Escherichia coli has numerous transporters that allow it to take up hexoses and pentoses, which recognize the more abundant pyranose forms of these sugars. Here we report the biochemical and structural characterization of a transporter protein YtfQ from E. coli that forms part of an uncharacterized ABC transporter system. Remarkably the crystal structure of this protein, solved to 1.2 Å using x-ray crystallography, revealed that YtfQ binds a single molecule of galactofuranose in its ligand binding pocket. Selective binding of galactofuranose over galactopyranose was also observed using NMR methods that determined the form of the sugar released from the protein. The pattern of expression of the ytfQRTyjfF operon encoding this transporter mirrors that of the high affinity galactopyranose transporter of E. coli, suggesting that this bacterium has evolved complementary transporters that enable it to use all the available galactose present during carbon limiting conditions.  相似文献   

4.
In the pathogenic bacterium Bacillus anthracis, virulence requires induced expression of the anthrax toxin and capsule genes. Elevated CO2/bicarbonate levels, an indicator of the host environment, provide a signal ex vivo to increase expression of virulence factors, but the mechanism underlying induction and its relevance in vivo are unknown. We identified a previously uncharacterized ABC transporter (BAS2714-12) similar to bicarbonate transporters in photosynthetic cyanobacteria, which is essential to the bicarbonate induction of virulence gene expression. Deletion of the genes for the transporter abolished induction of toxin gene expression and strongly decreased the rate of bicarbonate uptake ex vivo, demonstrating that the BAS2714-12 locus encodes a bicarbonate ABC transporter. The bicarbonate transporter deletion strain was avirulent in the A/J mouse model of infection. Carbonic anhydrase inhibitors, which prevent the interconversion of CO2 and bicarbonate, significantly affected toxin expression only in the absence of bicarbonate or the bicarbonate transporter, suggesting that carbonic anhydrase activity is not essential to virulence factor induction and that bicarbonate, and not CO2, is the signal essential for virulence induction. The identification of this novel bicarbonate transporter essential to virulence of B. anthracis may be of relevance to other pathogens, such as Streptococcus pyogenes, Escherichia coli, Borrelia burgdorferi, and Vibrio cholera that regulate virulence factor expression in response to CO2/bicarbonate, and suggests it may be a target for antibacterial intervention.  相似文献   

5.
Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.  相似文献   

6.
7.
Zymomonas mobilis is a promising organism for biofuel production as it can produce ethanol from glucose at high rates. However, Z. mobilis does not natively ferment C5 sugars such as xylose. While it has been engineered to do so, the engineered strains do not metabolize these sugars at high rates. Previous research has identified some of the bottlenecks associated with xylose metabolism in Z. mobilis. In this work, we investigated transport as a possible bottleneck. In particular, we hypothesized that the slow uptake of xylose through the promiscuous Glf transporter may limit the efficiency of xylose metabolism in Z. mobilis. To test this hypothesis, we expressed XylE, the low-affinity xylose transporter from Escherichia coli, in a xylose-utilizing strain of Z. mobilis. Our results show that the expression of this pentose-specific transporter improves the rate of xylose utilization in Z. mobilis; however, this enhancement is seen only at high xylose concentrations. In addition, we also found that overexpression of the promiscuous Z. mobilis transporter Glf yielded similar results, suggesting that the transport bottleneck is not due to the specificity, but rather the capacity for sugar uptake.  相似文献   

8.
2,3‐Butanediol (2,3‐BDO) is a promising bulk chemical owing to its high potential in industrial applications. Here, we engineered Klebsiella oxytoca for the economic production of 2,3‐BDO using mixed sugars from renewable biomass. First, to improve xylose consumption, the xylose transporter gene (xylE) was integrated into the methylglyoxal synthase A (mgsA)‐coding gene loci, and the engineered CHA004 strain showed much faster consumption of xylose than wild‐type (WT) strain with 1.4‐fold increase of overall sugar consumption rate. To further improve sugar utilization, we performed adaptive laboratory evolution for 90 days. The evolved strain (CHA006) was evaluated by cultivating it in the media containing single‐ or mixed‐sugars, and it was clearly observed that CHA006 has improved sugar consumption and 2,3‐BDO production than those of the parental strain. Finally, we demonstrated the superiority of CHA006 by culturing in two lignocellulosic hydrolysates derived from sunflower or pine tree. Particularly, in the pine tree hydrolysate containing xylose, glucose, galactose, and mannose, the CHA006 strain showed much improved consumption rates for all sugars, and 2,3‐BDO productivity (0.73 g L?1 hr?1) increased by 3.2‐fold compared to WT strain. We believe that the engineered CHA006 strain can be a potential host in the development of economic bioprocess for 2,3‐BDO through efficient utilization of mixed sugars derived from lignocellulosic biomass.  相似文献   

9.
10.
11.
The Escherichia coli species is divided in phylogenetic groups that differ in their virulence and commensal distribution. Strains belonging to the B2 group are involved in extra-intestinal pathologies but also appear to be more prevalent as commensals among human occidental populations. To investigate the genetic specificities of B2 sub-group, we used 128 sequenced genomes and identified genes of the core genome that showed marked difference between B2 and non-B2 genomes. We focused on the gene and its surrounding region with the strongest divergence between B2 and non-B2, the antiporter gene nhaA. This gene is part of the nhaAR operon, which is in the core genome but flanked by mobile regions, and is involved in growth at high pH and high sodium concentrations. Consistently, we found that a panel of non-B2 strains grew faster than B2 at high pH and high sodium concentrations. However, we could not identify differences in expression of the nhaAR operon using fluorescence reporter plasmids. Furthermore, the operon deletion had no differential impact between B2 and non-B2 strains, and did not result in a fitness modification in a murine model of gut colonization. Nevertheless, sequence analysis and experiments in a murine model of septicemia revealed that recombination in nhaA among B2 strains was observed in strains with low virulence. Finally, nhaA and nhaAR operon deletions drastically decreased virulence in one B2 strain. This effect of nhaAR deletion appeared to be stronger than deletion of all pathogenicity islands. Thus, a population genetic approach allowed us to identify an operon in the core genome without strong effect in commensalism but with an important role in extra-intestinal virulence, a landmark of the B2 strains.  相似文献   

12.
13.
Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.The transporters and enzymes in many sugar metabolic pathways are conditionally expressed in response to their cognate sugar or a downstream pathway intermediate. While the induction of these pathways in response to a single sugar has been studied extensively (28), far less is known about how these pathways are induced in response to multiple sugars. One notable exception is the phenomenon observed when bacteria are grown in the presence of glucose and another sugar (10, 15). In such mixtures, the bacteria will often consume glucose first before consuming the other sugar, a process known as carbon catabolite repression (27). The classic example of carbon catabolite repression is the diauxic shift seen in the growth of Escherichia coli on mixtures of glucose and lactose, where the cells first consume glucose before consuming lactose. When the cells are consuming glucose, the genes in the lactose metabolic pathway are not induced, thus preventing the sugar from being consumed. A number of molecules participate in this regulation, including the cyclic AMP receptor protein (CRP), adenylate cyclase, cyclic AMP (cAMP), and EIIA from the phosphoenolpyruvate:glucose phosphotransferase system (PTS) (33). In addition to lactose, the metabolic genes for many other sugars are subject to catabolite repression by glucose in E. coli (27). While the preferential utilization of glucose is well known, it is an open question whether additional hierarchies exist among other sugars.Recently, substantial effort has been directed toward developing microorganisms capable of producing chemicals and biofuels from plant biomass (1, 34, 42). After glucose, l-arabinose and d-xylose are the next most abundant sugars found in plant biomass. Therefore, a key step in producing various chemicals and fuels from plant biomass will be the engineering of strains capable of efficiently fermenting these three sugars. However, one challenge concerns catabolite repression, which prevents microorganisms from fermenting these three sugars simultaneously and, as a consequence, may decrease the efficiency of the fermentation process. E. coli cells will first consume glucose before consuming either arabinose or xylose. As in the case of lactose, the genes in the arabinose and xylose metabolic pathways are not expressed when glucose is being consumed. In addition to glucose catabolite repression, a second hierarchy, between arabinose and xylose, appears to exist. Kang and coworkers have observed that the genes in the xylose metabolic pathway were repressed when cells were grown in a mixture of arabinose and xylose (21). Hernandez-Montalvo and coworkers also observed that E. coli utilizes arabinose before xylose (19). While a number of strategies exist for breaking the glucose-mediated repression of arabinose and xylose metabolism (8, 16, 19, 31), none exist for breaking the arabinose-mediated repression of xylose metabolism. Moreover, little is known about this repression beyond the observations made by these researchers.In this work, we investigate how the arabinose and xylose metabolic pathways are jointly regulated. We demonstrate that E. coli will consume arabinose before consuming xylose when it is grown in a mixture of the two sugars. Consistent with a mechanism involving catabolite repression, the genes in the xylose metabolic pathway are repressed in the presence of arabinose. We found that this repression is AraC dependent and is most likely due to binding by arabinose-bound AraC to the xylose promoters, with consequent inhibition of gene expression.  相似文献   

14.
15.
Recently, a putative ATP-binding cassette (ABC) transport system was identified in Bifidobacterium longum NCC2705 that is highly up-regulated during growth on fructose as the sole carbon source. Cloning and expression of the corresponding ORFs (bl0033-0036) result in efficient fructose uptake by bacteria. Sequence analysis reveals high similarity to typical ABC transport systems and suggests that these genes are organized as an operon. Expression of FruE is induced by fructose, ribose, or xylose and is able to bind these sugars with fructose as the preferred substrate. Our data suggest that BL0033-0036 constitute a high affinity fructose-specific ABC transporter of B. longum NCC2705. We thus suggest to rename the coding genes to fruEKFG and the corresponding proteins to FruE (sugar-binding protein), FruK (ATPase subunit), FruF, and FruG (membrane permeases). Furthermore, protein-protein interactions between the components of the transporter complex were determined by GST pulldown and Western blot analysis. This revealed interactions between the membrane subunits FruF and FruG with FruE, which in vivo is located on the external side of the membrane, and with the cytoplasmatic ATPase FruK. This is in line with the proposed model for bacterial ABC sugar transporters.  相似文献   

16.
Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was selected because of its high affinity for xylose and was codon-optimized for functional expression in C. tropicalis. The codon-optimized gene was placed under the control of the GAPDH promoter and was integrated into the genome of C. tropicalis strain LXU1 which is xyl2-disrupted and NXRG (codon-optimized Neurospora crassa xylose reductase) introduced. The xylose uptake rate was increased by 37–73 % in the transporter expression-enhanced strains depending on the glucose/xylose mixture ratio. The recombinant strain LXT2 in 500-mL flask culture using glucose/xylose mixtures showed a xylose uptake rate that was 29 % higher and a xylitol volumetric productivity (1.14 g/L/h) that was 25 % higher than the corresponding rates for control strain LXU1. Membrane protein extraction and Western blot analysis confirmed the successful heterologous expression and membrane localization of the xylose transporter in C. tropicalis.  相似文献   

17.
18.
Zero trans-influx assays of glucose and xylose were performed using Saccharomyces cerevisiae to investigate transport characteristics under high and low glucose conditions. Under high glucose conditions, most glucose was transported by the low-affinity transporter. The high-affinity transporter was expressed under low glucose conditions, transporting over 50% glucose. Inhibition kinetics revealed that xylose was transported by both high- and low-affinity glucose transporters. Affinities of both glucose transporters for xylose were very low under high glucose condition but increased to a similar level to glucose under low glucose condition. The maximum rate of xylose transport increased by 85%, while an overall maximum glucose transport rate decreased by 42% under low glucose condition, indicating the presence of other transport system for sugars except for glucose. It was suggested that expression of the high-affinity transporter and increased affinity of glucose transporters for xylose under low glucose condition would provide a fermentation strategy for enhancing the productivity of xylitol by recombinant S. cerevisiae harboring the xylose reductase gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号