首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.  相似文献   

2.
We previously reported that phospholipase increases host cell penetration by Toxoplasma gondii . Here we show that calcium-dependent phospholipase A (PLA) activity is found in the supernatant of sonically disrupted T. gondii . When fractions of disrupted T. gondii were incubated with host cells, the release of fatty acids and lysolipids was detected. Fractions of sonically disrupted T. gondii with PLA activity increased T. gondii host cell penetration in a bioassay. In addition, a protein of approximately 20 kDa was detected by immunoblot of T. gondii antigens with horse antiserum to snake venom, the major antibody of which recognizes PLA2. Incubation of T. gondii with exogenous PLA2 resulted in increased solubility of a rhoptry protein. This protein, which we previously characterized as involved with enhanced parasite invasion of host cells and which is recognized by monoclonal antibody Tg49, was detected in increased amounts in supernatant fractions of extracellular parasites treated with PLA2. Whereas without PLA2 treatment, it is only slightly soluble under physiological conditions. This raises the possibility that PLA may be implicated in the release of rhoptry proteins.  相似文献   

3.
P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells.  相似文献   

4.
Hosts that are infected with Toxoplasma gondii must mount a powerful immune response to contain dissemination of the parasite and to prevent mortality. After parasite proliferation has been contained by interferon-gamma-dependent responses, the onset of the chronic phase of infection is characterized by continuous cell-mediated immunity. Such potent responses are kept under tight control by a class of anti-inflammatory eicosanoid, the lipoxins. Here, we review such immune-containment strategies from the perspective of the host, which attempts to keep pro-inflammatory responses under control during chronic disease, as well as from the perspective of the pathogen, which hijacks the lipoxygenase machinery of the host for its own advantage, probably as an immune-escape mechanism.  相似文献   

5.
ABSTRACT We immunolocalized a Toxoplasma gondii rhoptry protein (ROP1) before and after parasite host cell invasion of human fibroblasts and TG180 murine sarcoma cells by electron microscopy and immunogold labeling using either a monoclonal antibody (Tg49) or a monospecific rabbit antiserum (α249). At all stages of parasite growth ROP1 was found within the body but rarely within the peduncle of rhoptries, even in those that appeared empty. Immediately after host cell invasion ROP1 was associated with the parasitophorous vacuole membrane. Within hours after invasion the amount of ROP1 immunodetectable on the parasitophorous vacuole membrane was markedly decreased. The localization of ROP1 suggests a role in the early establishment of infection in host cells, consistent with previous work that has indicated that monoclonal antibodies to ROP1 (including the one used in these studies) interfere with the phenomenon of penetration enhancement.  相似文献   

6.
7.
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades and replicates within most nucleated cells of warm-blooded animals. The basis for this wide host cell tropism is unknown but could be because parasites invade host cells using distinct pathways and/or repertoires of host factors. Using synchronized parasite invasion assays, we found that host microtubule disruption significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are specifically associated with the moving junction, which is the site of contact between the host cell and the invading parasite. Host microtubules are specifically associated with the moving junction of those parasites invading early after stimulating invasion but not with those invading later. Disruption of host microtubules has no effect on parasite contact, attachment, motility, or rate of penetration. Rather, host microtubules hasten the time before parasites commence invasion. This effect on parasite invasion is distinct from the role that host microtubules play in bacterial and viral infections, where they function to traffic the pathogen or pathogen-derived material from the host cell''s periphery to its interior. These data indicate that the host microtubule cytoskeleton is a structure used by Toxoplasma to rapidly infect its host cell and highlight a novel function for host microtubules in microbial pathogenesis.Toxoplasma gondii is an obligate intracellular protozoan parasite that is capable of causing disease in fetuses and immunocompromised individuals (23). The parasite infects a wide range of nucleated cells of most warm-blooded animals. The mechanisms underlying this wide tropism are not known but could be due to either the parasite infecting cells using a ubiquitously expressed host receptor and associated machinery, inserting its own receptor into the host cell''s plasma membrane, or using multiple host cell receptors/machinery (5).Toxoplasma invasion is a multistep, complex process consisting of parasite contact to host cells, intimate attachment, parasite motility, and then penetration (5). Host cell contact is a loose, low-affinity interaction that is mediated by parasite surface antigens. An unknown signal then triggers the release of proteins from a specialized secretory organelle called micronemes whose contents include proteins that function as adhesins. This is then followed by parasite gliding motility on the host cell surface. At some point, proteins from a second secretory organelle, named rhoptries, are exocytosed. Among these rhoptry proteins, several (RON2, RON4, RON5, and RON8) are part of a preformed complex that binds the previously secreted AMA1 microneme protein (1, 2, 20, 33). Together, these proteins form the moving junction complex, which defines the parasite entry site on the host cell plasma membrane. Parasite penetration occurs by the parasite propelling itself forward, via acto-myosin-dependent motility, into the host plasma membrane (35). This causes an invagination of the plasma membrane resulting in the formation of the parasitophorous vacuole (PV), which is the compartment that the parasite resides in throughout its time in the host cell. However, host plasma membrane-associated proteins are selectively incorporated into the developing PV such that glycosylphosphatidylinositol (GPI)-linked proteins are included, while single-pass transmembrane proteins are excluded (7, 24).In contrast to parasite molecules that function during invasion, few host cell components involved in this process are known. A notable exception is the finding that host Arp2/3-dependent actin polymerization promotes Toxoplasma invasion (11). Nevertheless, how actin or other host molecules function during invasion remains to be determined. The host microtubule cytoskeleton has been widely studied for its role during receptor-mediated endocytosis, as well as in bacterial and viral infections, where microtubules act to facilitate cargo transport from the host cell periphery to the interior (8, 15, 27, 29, 40). Consistent with this role in cargo transport, host microtubules also promote trafficking of rhoptry proteins secreted into the host cell (12). However, whether this host cell structure functions during parasite invasion per se is unknown.Here, we tested the hypothesis that host microtubules are used by Toxoplasma tachyzoites to penetrate into its host cell. Using synchronized parasite invasion assays, we find that disruption of host microtubules significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are localized to the moving junction but, unlike their previously described role in pathogen invasion, host microtubules promote tachyzoite invasion by hastening the time that parasites initiate invasion.  相似文献   

8.
9.
10.
弓形虫病是一种世界性分布的人兽共患寄生虫病,对人类,尤其是妇女、儿童危害很大,估计全世界有1/3人受到该病的威胁。孕妇感染弓形虫后导致早产、流产、胎儿发育畸形;弓形虫是免疫功能低下患者的主要死亡原因之一。犬、猫是弓形虫的中间宿主和终末宿主,是人类感染弓形虫的主要来源。随着我国经济的迅速发展和人民生活水平的不断提高,城市中饲养犬、猫作为宠物的人越来越多,人、宠物间的亲密接触增加了弓形虫病传播给人的机会。加强对宠物犬、猫弓形虫病的研究及防控势在必行。本文就弓形虫的危害、宠物犬猫弓形虫感染及其防控措施作以综述。  相似文献   

11.
Pneumocystis carinii and Toxoplasma gondii are the two major parasitic protozoan pathogens in the immunocompromised host. Both organisms cause latent infection in humans and many animals. Cats are the definitive hosts for toxoplasmosis; the animal vector for pneumocystis (if any) has not been defined. Toxoplasma is an obligate intracellular parasite, whereas the available evidence suggests that Pneumocystis carinii exists primarily extracellularly. In compromised hosts, pneumocystis infection usually involves only lungs, whereas toxoplasma causes a generalized infection with encephalitis being the principal clinical manifestation. Both types of infection are treated with combinations of folate antagonists (trimethoprim or pyrimethamine with sulfonamide). Both parasites are associated with cytomegalovirus infection in immunosuppressed hosts, an association which may be due to symbiosis between parasites, or to an additive immunosuppressive effect of dual infection on the hosts.  相似文献   

12.
ABSTRACT. Toxoplasma gondii is a ubiquitous apicomplexan parasite and a major opportunistic pathogen under AIDS-induced conditions, where it causes encephalitis when the bradyzoite (cyst) stage is reactivated. A bradyzoite-specific Mab, 74.1.8, reacting with a 28 kDa antigen, was used to study bradyzoite development in vitro by immuno-electron microscopy and immunofluorescence in human fibroblasts infected with ME49 strain T. gondii . Bradyzoites were detected in tissue culture within 3 days of infection. Free floating cyst-like structures were also identified. Western blotting demonstrated the expression of bradyzoite antigens in these free-floating cysts as well as in the monolayer. Bradyzoite development was increased by using media adjusted to pH 6.8 or 8.2. The addition of γ-interferon at day 3 of culture while decreasing the total number of cysts formed prevented tachyzoite overgrowth and enabled study of in vitro bradyzoites for up to 25 days. The addition of IL-6 increased the number of cysts released into the medium and increased the number of cysts formed at pH 7.2. Confirmation of bradyzoite development in vitro was provided by electron microscopy. It is possible that the induction of an acute phase response in the host cell may be important for bradyzoite differentiation. This system should allow further studies on the effect of various agents on the development of bradyzoites.  相似文献   

13.
The phylum Apicomplexa comprises a group of obligate intracellular parasites of broad medical and agricultural significance, including Toxoplasma gondii and the malaria-causing Plasmodium spp. Key to their parasitic lifestyle is the need to egress from an infected cell, actively move through tissue, and reinvade another cell, thus perpetuating infection. Ca2+-mediated signaling events modulate key steps required for host cell egress, invasion and motility, including secretion of microneme organelles and activation of the force-generating actomyosin-based motor. Here we show that a plant-like Calcium-Dependent Protein Kinase (CDPK) in T. gondii, TgCDPK3, which localizes to the inner side of the plasma membrane, is not essential to the parasite but is required for optimal in vitro growth. We demonstrate that TgCDPK3, the orthologue of Plasmodium PfCDPK1, regulates Ca2+ ionophore- and DTT-induced host cell egress, but not motility or invasion. Furthermore, we show that targeting to the inner side of the plasma membrane by dual acylation is required for its activity. Interestingly, TgCDPK3 regulates microneme secretion when parasites are intracellular but not extracellular. Indeed, the requirement for TgCDPK3 is most likely determined by the high K+ concentration of the host cell. Our results therefore suggest that TgCDPK3''s role differs from that previously hypothesized, and rather support a model where this kinase plays a role in rapidly responding to Ca2+ signaling in specific ionic environments to upregulate multiple processes required for gliding motility.  相似文献   

14.
15.
Autophagy has been shown to contribute to defense against intracellular bacteria and parasites. In comparison, the ability of such pathogens to manipulate host cell autophagy to their advantage has not been examined. Here we present evidence that infection by Toxoplasma gondii, an intracellular protozoan parasite, induces host cell autophagy in both HeLa cells and primary fibroblasts, via a mechanism dependent on host Atg5 but independent of host mammalian target of rapamycin suppression. Infection led to the conversion of LC3 to the autophagosome-associated form LC3-II, to the accumulation of LC3-containing vesicles near the parasitophorous vacuole, and to the relocalization toward the vacuole of structures labeled by the phosphatidylinositol 3-phosphate indicator YFP-2×FYVE. The autophagy regulator beclin 1 was concentrated in the vicinity of the parasitophorous vacuole in infected cells. Inhibitor studies indicated that parasite-induced autophagy is dependent on calcium signaling and on abscisic acid. At physiologically relevant amino acid levels, parasite growth became defective in Atg5-deficient cells, indicating a role for host cell autophagy in parasite recovery of host cell nutrients. A flow cytometric analysis of cell size as a function of parasite content revealed that autophagy-dependent parasite growth correlates with autophagy-dependent consumption of host cell mass that is dependent on parasite progression. These findings indicate a new role for autophagy as a pathway by which parasites may effectively compete with the host cell for limiting anabolic resources.Macroautophagy (hereafter referred to as autophagy) is a major catabolic process in which cytosolic constituents are sequestered within double-membraned vesicles (autophagosomes) and subsequently delivered to lysosomes for degradation. Current evidence indicates at least two distinct functions for this process. On the one hand, autophagy can be up-regulated under nutrient-limiting conditions to increase nutrient supply via recycling of the products of autophagic degradation, which may be exported from the lysosome (1). The up-regulation of autophagy upon starvation is thought to be mediated by the suppression of signaling through the mTOR pathway (2). On the other hand, autophagy can serve to maintain cellular homeostasis by facilitating the removal of damaged or deleterious elements, such as misfolded protein aggregates (3). An important example of the latter function is the role of autophagy in restricting the growth of intracellular pathogens, including both free bacteria that have escaped into host cytosol, such as group A Streptococcus, and pathogens, such as Mycobacterium tuberculosis, that reside in parasitophorous vacuoles in macrophages (4, 5). In macrophages infected with Toxoplasma gondii, fusion of the parasitophorous vacuole with lysosomes can be induced in an autophagy-dependent manner when host cell anti-parasitic function is activated via CD40 (6). Autophagy as a component of host defense may be up-regulated by inflammatory agents such as lipopolysaccharide (7) and interferon-γ (8).Although the clearance function of autophagy may enhance pathogen killing in host cells that have been activated to generate antimicrobial or antiparasitic function, in permissive host cells, in which the pathogen is less susceptible to sequestration by the autophagosome, autophagy may conceivably play a quite different role. Modulation of the balance between anabolic and catabolic processes may affect the outcome of competition between pathogen and host cell for limiting nutrients. In particular, the nutritive function of autophagy could favor pathogen expansion by providing greater access to host cell biomass. The intracellular apicomplexan parasite, T. gondii, is a suitable agent for the investigation of this hypothesis, because it has been shown to be highly dependent on its host cell for the supply of several nutrients, including amino acids (9), lipids (10), and purines (11). T. gondii replicates within a parasitophorous vacuole that, in permissive host cells, is protected from lysosomal fusion. Recent evidence indicates that in such permissive cells, in which the parasite can differentiate into bradyzoites associated with chronic infection, the pathogen is able to actively sequester host cell lysosome-derived vesicles, thereby potentially gaining access to their contents (12).The ability of intracellular parasites to regulate host cell autophagy has been little examined, and there is also little information with respect to the impact of these pathogens on host cell signals that potentially affect the autophagic pathway. In addition to mTOR, these include calcium ions, which have been implicated in autophagy induced by endoplasmic reticulum stress (13). In this study, we provide evidence that T. gondii induces host cell autophagy by a mechanism dependent on calcium but independent of mTOR and that it exploits the nutritive function of host autophagy to enhance its proliferation.  相似文献   

16.
The protozoan parasite Toxoplasma gondii has recently emerged as an important opportunistic pathogen in humans. Toxoplasma also shares a number of biological features with Plasmodium and Eimeria, which are important pathogens of humans and animals. Because o f the ease o f experimental use, David Sibley, Elmer Pfefferkom and John Boothroyd have undertaken the development of genetics in Toxoplasma as a model intracellular parasite. Toxoplasma is presently the only parasitic protozoan where both classical and molecular genetics are feasible. The recent advances in this system are highlighted here, along with potential applications of genetics for understanding intracellular parasitism.  相似文献   

17.
18.
Toxoplasma gondii tachyzoites were quiescent in mouse peritoneal fluid or in K2SO4 buffer at pH 8.2. They became consistently motile when K+ was replaced by other monovalent or divalent cations at a constant pH (pH = 8.2). They also became motile when Cl? was substituted for SO42-. Nitrate or SCN?, can also be substituted for Cl? to a certain extent. Tachyzoites showed independent movement for more than 15 min in KCl, and for about 5 min in the other buffers at pH 8.2 after which they were exhausted and stopped. These tachyzoites could not then be further stimulated to motility by renewal of the suspension buffer. Infection of monolayer cells was demonstrated only with parasites which were motile during inoculation. The highest infectivity was thus obtained either with freshly collected tachyzoites or with those preincubated in K2SO4 buffer for 30 min at 37° C at alkaline pH and thus not yet exhausted for motility. Approximately 34 to 38% of these latter organisms were seen to enter cells when they were inoculated into cultures immediately after being resuspended in MEM for 30 min at 37° C. Conversely, those whose motility had been exhausted by the preincubation in buffers other than K2SO4, pH 8.2 could not enter monolayer cells. Additionally, parasites were unable to enter cells when inoculated into cultures in K2SO4 buffer at alkaline pH; instead they remained quiescent on the surface of the monolayer cells, suggesting that Toxoplasma enters the host cells by active invasion.  相似文献   

19.
20.
A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5''-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号