首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium (Ca2+) plays an important role in angiogenesis, as it activates the cell migration machinery. Different proangiogenic factors have been demonstrated to induce transient Ca2+ increases in endothelial cells. This has raised interest in the contribution of Ca2+ channels to cell migration, and in a possible use of channel-blocking compounds in angiogenesis-related pathologies. We have investigated the ability of erythropoietin (Epo), a cytokine recently involved in angiogenesis, to induce Ca2+ influx through different types of membrane channels in EA.hy926 endothelial cells. The voltage-dependent Ca2+ channel antagonists amlodipine and diltiazem inhibited an Epo-triggered transient rise in intracellular Ca2+, similarly to a specific inhibitor (Pyr3) and a blocking antibody against the transient potential calcium channel 3 (TRPC3). Unlike diltiazem, amlodipine and the TRPC3 inhibitors prevented the stimulating action of Epo in cell migration and in vitro angiogenesis assays. Amlodipine was also able to inhibit an increase in endothelial cell migration induced by Epo in an inflammatory environment generated with TNF-α. These results support the participation of Ca2+ entry through voltage-dependent and transient potential channels in Epo-driven endothelial cell migration, highlighting the antiangiogenic activity of amlodipine.  相似文献   

2.
3.
Erythropoietin modulates calcium influx through TRPC2   总被引:4,自引:0,他引:4  
Mammalian isoforms of calcium-permeable Drosophila transient receptor potential channels (TRPC) are involved in the sustained phase of calcium entry in nonexcitable cells. Erythropoietin (Epo) stimulates a rise in intracellular calcium ([Ca](i)) via activation of voltage-independent calcium channel(s) in erythroid cells. Here, involvement of murine orthologs of classical TRPC in the Epo-modulated increase in [Ca](i) was examined. RT-PCR of TRPC 1-6 revealed high expression of only TRPC2 in Epo-dependent cell lines HCD-57 and Ba/F3 Epo-R, in which Epo stimulates a rise in [Ca](i). Using RT-PCR, Western blotting, and immunolocalization, expression of the longest isoform of mTRPC2, clone 14, was demonstrated in HCD-57 cells, Ba/F3 Epo-R cells, and primary murine erythroblasts. To determine whether erythropoietin is capable of modulating calcium influx through TRPC2, CHO cells were cotransfected with Epo-R subcloned into pTracer-CMV and either murine TRPC2 clone 14 or TRPC6, a negative control, into pQBI50. Successful transfection of Epo-R was verified in single cells by detection of green fluorescent protein from pTracer-CMV using digital video imaging, and successful transfection of TRPC was confirmed by detection of blue fluorescent protein fused through a flexible linker to TRPC. [Ca](i) changes were simultaneously monitored in cells loaded with Rhod-2 or Fura Red. Epo stimulation of CHO cells cotransfected with Epo-R and TRPC2 resulted in a rise in [Ca](i) above base line (372 +/- 71%), which was significantly greater (p < or = 0.0007) than that seen in cells transfected with TRPC6 or empty pQBI50 vector. This rise in [Ca](i) required Epo and extracellular calcium. These results identify a calcium-permeable channel, TRPC2, in erythroid cells and demonstrate modulation of calcium influx through this channel by erythropoietin.  相似文献   

4.
《Autophagy》2013,9(8):829-839
Beclin 1, a tumor suppressor protein, acts as an initiator of autophagy in mammals. Heterozygous disruption of Beclin 1 accelerates tumor growth, but the underlying mechanisms remain unclear. We examined the role of Beclin 1 in tumor proliferation and angiogenesis, using a primary mouse melanoma tumor model. Beclin 1 (Becn1+/-) hemizygous mice displayed an aggressive tumor growth phenotype with increased angiogenesis under hypoxia, associated with enhanced levels of circulating erythropoietin but not vascular endothelial growth factor, relative to wild-type mice. Using in vivo and ex vivo assays, we demonstrated increased angiogenic activity in Becn1+/- mice relative to wild-type mice. Endothelial cells from Becn1+/- mice displayed increased proliferation, migration and tube formation in response to hypoxia relative to wild-type cells. Moreover, Becn1+/- cells subjected to hypoxia displayed increased hypoxia-inducible factor-2α (HIF-2α) expression relative to HIF-1α. Genetic interference of HIF-2α but not HIF-1α, dramatically reduced hypoxia-inducible proliferation, migration and tube formation in Becn1+/- endothelial cells. We demonstrated that mice deficient in the autophagic protein Beclin 1 display a pro-angiogenic phenotype associated with the upregulation of HIF-2α and increased erythropoietin production. These results suggest a relationship between Beclin 1 and the regulation of angiogenesis, with implications in tumor growth and development.  相似文献   

5.
Vascular endothelial growth factor (VEGF) exerts crucial functions during pathological angiogenesis and normal physiology. We observed increased hematocrit (60-75%) after high-grade inhibition of VEGF by diverse methods, including adenoviral expression of soluble VEGF receptor (VEGFR) ectodomains, recombinant VEGF Trap protein and the VEGFR2-selective antibody DC101. Increased production of red blood cells (erythrocytosis) occurred in both mouse and primate models, and was associated with near-complete neutralization of VEGF corneal micropocket angiogenesis. High-grade inhibition of VEGF induced hepatic synthesis of erythropoietin (Epo, encoded by Epo) >40-fold through a HIF-1alpha-independent mechanism, in parallel with suppression of renal Epo mRNA. Studies using hepatocyte-specific deletion of the Vegfa gene and hepatocyte-endothelial cell cocultures indicated that blockade of VEGF induced hepatic Epo by interfering with homeostatic VEGFR2-dependent paracrine signaling involving interactions between hepatocytes and endothelial cells. These data indicate that VEGF is a previously unsuspected negative regulator of hepatic Epo synthesis and erythropoiesis and suggest that levels of Epo and erythrocytosis could represent noninvasive surrogate markers for stringent blockade of VEGF in vivo.  相似文献   

6.
The outer blood-retinal barrier is formed by retinal pigment epithelial (RPE) cells and its disruption significantly contributes to the development of diabetic macular edema (DME). The aim of the study was to explore whether erythropoietin (Epo) has beneficial effects on the barrier function of human RPE cells and the main downstream pathways involved. ARPE-19 cells were cultured in standard conditions and under conditions leading to the disruption of the monolayer [25 mmol/L d-glucose plus IL-1β (10 ng/mL)]. Epo (200 mU/mL/day) was added during the last 2 days of the experiment. The experiments were repeated in the presence of an Epo neutralizing antibody and specific inhibitors of JAK2 and PI3K (AG490 and LY294002, respectively). Permeability was evaluated by fluorescein isothiocyanate dextran (70 kDa) movements. Distribution of tight junction proteins was examined by immunofluorescence. Changes in cytosolic Ca2+ induced by Epo were also measured. Epo treatment was able to prevent but not to restore the increase of permeability induced by high glucose plus IL-1β. The protective effect of Epo on RPE barrier function was completely blocked by AG490 and almost completely abolished by LY294002. In addition, Epo was able to increase cytosolic Ca2+ with dependence on extracellular calcium influx and this effect was blocked by either JAK2 or PI3K inhibition. We conclude that RPE disruption induced by high glucose plus IL-1β is prevented by Epo through the downstream signaling of JAK2 and PI3K/AKT pathways.  相似文献   

7.
Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels.  相似文献   

8.
Recent studies indicate that cancer cells express erythropoietin receptor (EpoR). In this study, we have shown that erythropoietin (Epo) activates the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), and promotes migration in MCF-7 breast cancer cells. Epo-stimulated MCF-7 cell migration was blocked by the MEK inhibitor PD098059 and by dominant negative MEK-1, indicating an essential role for ERK. When MCF-7 cells were exposed to hypoxia (1.0% O(2)) for 3 h, the Epo mRNA level increased 2.4 +/- 0.5-fold, the basal level of ERK activation increased, and cell migration increased 2.0 +/- 0.1-fold. Soluble EpoR and Epo-neutralizing antibody significantly inhibited hypoxia-induced MCF-7 cell migration, suggesting a major role for autocrine EpoR cell signaling. MCF-7 cell migration under hypoxic conditions was also inhibited by PD098059. These experiments identify a novel pathway by which exogenously administered Epo, and Epo that is produced locally by cancer cells under hypoxic conditions, may stimulate cancer cell migration.  相似文献   

9.
The protective effect of erythropoietin (Epo) is based on its ability to reduce oxidation and to stabilize the cells. The aim of the study was to evaluate the influence of Epo on malonyl dialdehyde (MDA), intercellular adhesion molecule‐1 (ICAM‐1) (CD54) and platelet–endothelial cell adhesion molecule‐1 (PECAM‐1) (CD31) levels on human umbilical vein endothelial cells (HUVECs) stimulated by tumour necrosis factor‐α (TNF‐α). HUVECs were incubated with Epo (10–40 IU ml−1) or TNF‐α (10–40 ng ml−1) alone or preincubated with Epo (20 IU ml−1) and subsequently stimulated with TNF‐α (10–40 ng ml−1). MDA concentrations were measured using the high‐performance liquid chromatography, whereas ICAM‐1 and PECAM‐1 expressions were evaluated by flow cytometry. Incubation with Epo resulted in a decrease in MDA and the increased expressions of ICAM‐1 and PECAM‐1. Exposure to TNF‐α reflected an increase in MDA, ICAM‐1 and PECAM‐1 levels. These changes were inhibited by preincubation with Epo. The cytoprotective activity proven in this study points to new applications and therapeutic possibilities for Epo. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Lee SJ  Kim HP  Jin Y  Choi AM  Ryter SW 《Autophagy》2011,7(8):829-839
Beclin 1, a tumor suppressor protein, acts as an initiator of autophagy in mammals. Heterozygous disruption of Beclin 1 accelerates tumor growth, but the underlying mechanisms remain unclear. We examined the role of Beclin 1 in tumor proliferation and angiogenesis, using a primary mouse melanoma tumor model. Beclin 1 (Becn1 (+/-) ) hemizygous mice displayed an aggressive tumor growth phenotype with increased angiogenesis under hypoxia, associated with enhanced levels of circulating erythropoietin but not vascular endothelial growth factor, relative to wild-type mice. Using in vivo and ex vivo assays, we demonstrated increased angiogenic activity in Becn1 (+/-) mice relative to wild-type mice. Endothelial cells from Becn1 (+/-) mice displayed increased proliferation, migration and tube formation in response to hypoxia relative to wild-type cells. Moreover, Becn1 (+/-) cells subjected to hypoxia displayed increased hypoxia-inducible factor-2α (HIF-2α) expression relative to HIF-1α. Genetic interference of HIF-2α but not HIF-1α, dramatically reduced hypoxia-inducible proliferation, migration and tube formation in Becn1 (+/-) endothelial cells. We demonstrated that mice deficient in the autophagic protein Beclin 1 display a pro-angiogenic phenotype associated with the upregulation of HIF-2α and increased erythropoietin production. These results suggest a relationship between Beclin 1 and the regulation of angiogenesis, with implications in tumor growth and development.  相似文献   

11.
TRPC2 is a member of the transient receptor potential (TRP) superfamily of Ca2+-permeable channels expressed in nonexcitable cells. TRPC2 is involved in a number of physiological processes including sensory activation of the vomeronasal organ, sustained Ca2+ entry in sperm, and regulation of calcium influx by erythropoietin. Here, a new splice variant of TRPC2, called "Similar to mouse TRPC2" (smTRPC2), was identified consisting of 213 amino acids, largely coincident with the N-terminus of TRPC2 clone 17. This splice variant lacks all six TRPC2 transmembrane domains and the calcium pore. Expression of smTRPC2 was found in all tissues examined by RT-PCR and in primary erythroid cells by RT-PCR and Western blotting. Confocal microscopy of CHO-S cells transfected with TRPC2 clone 14 and smTRPC2 demonstrated that TRPC2 clone 14 and smTRPC2 both localize at or near the plasma membrane and in the perinuclear region. Cell surface localization of TRPC2 was confirmed with biotinylation, and was not substantially affected by smTRPC2 expression. Coassociation of TRPC2 c14 and alpha with smTRPC2 was confirmed by immunoprecipitation. To examine the functional significance of smTRPC2 expression, a CHO-S model was used to study its effect on calcium influx stimulated by Epo through TRPC2. Single CHO-S cells which express transfected Epo-R were identified by detection of green fluorescent protein (GFP). Cells that express transfected TRPC2 c14 or alpha were identified by detection of blue fluorescent protein (BFP). [Ca]i was quantitiated with Fura Red fluorescence using digital video imaging. Epo stimulated calcium influx through TRPC2 isoforms c14 and alpha, which was inhibited by coexpression of smTRPC2. These data demonstrate that a short splice variant of TRPC2 exists in many cell types, which associates with and modifies the activity of functional TRPC2 splice variants.  相似文献   

12.
Eryptosis is a process by which mature erythrocytes can undergo self-destruction sharing several features with apoptosis. Premature programmed erythrocyte death may be induced by different agents. In this study, we compared mechanisms involved in two eryptotic models (oxidative stress and cell calcium overload) so as to distinguish whether they share signaling pathways and could be prevented by erythropoietin (Epo). Phosphatidylserine (PS) translocation and increased calcium content were common signs in erythrocytes exposed to sodium nitrite plus hydrogen peroxide or calcium ionophore A23187 (CaI), while increased ROS and decreased GSH levels were detected in the oxidative model. Protein kinase activation seemed to be an outstanding feature in eryptosis induced by oxidative stress, whereas phosphatase activation was favored in the CaI model. Cell morphology and membrane protein modifications were also differential signs between both models. Epo was able to prevent cell oxidative imbalance, thus blunting PS translocation. However, the hormone favored intracellular calcium influx which could be the reason why it could not completely counteract the induction of eryptosis. Instead, Epo was unable to inhibit PS externalization in the CaI model. The different mechanisms involved in the eryptotic models may explain the differential action of Epo upon erythrocytes induced to eryptosis by different agents.  相似文献   

13.
14.
Parathyroid hormone (PTH) directly interacts with bone remodeling osteoblasts and osteocytes expressing the G-protein coupled receptor PTH receptor 1 (PTH1R), and its osteoanabolic effects mostly involve the cAMP/PKA signaling cascade. Considering that PTH-dependent calcium entry in rat enterocytes is reproduced by the adenylate cyclase agonist forskolin or by cAMP analogues, possible involvement of calcium as a second messenger in PTH-dependent cAMP signaling was investigated in MG-63 cells. First, Ca2+ influx was confirmed in Fluo3-loaded MG-63 cells treated with a cell-permeable cAMP analog. Second, PTH (1–34) and forskolin promoted calcium influxes that were completely abrogated by the PKA inhibitor H-89. Ca2+ entry was not reproduced when PTH (1–34) was combined with the PKC-activating competitor PTH (3–34). Vanilloid transient potential (TRPV) channel inhibitor Ruthenium Red, but not a voltage-dependent calcium channel (VDCC) inhibitor nifedipine, efficiently stunted Ca2+ entry, and comparable abrogation was reproduced in cells treated with TRPV4-selective inhibitor RN-1734 or transfected with TRPV4-specific siRNA. Interestingly, PTH-driven Ca2+ through TRPV4 significantly inhibited MG63 cell migration through a mechanism requiring extracellular Ca2+. In contrast, the inhibitory effects of forskolin on migration were refractory to TRPV4 silencing or to RN-1734. Altogether, our results indicate that single treatment with PTH (1–34) promotes extracellular calcium entry through TRPV4 channels in MG-63 cells through a cAMP/PKA-dependent mechanism, and that this influx affects cell migration.  相似文献   

15.
16.
Erythropoietin (Epo) stimulates a significant increase in the intracellular calcium concentration ([Ca(2+)](i)) through activation of the murine transient receptor potential channel TRPC2, but TRPC2 is a pseudogene in humans. TRPC3 expression increases on normal human erythroid progenitors during differentiation. Here, we determined that erythropoietin regulates calcium influx through TRPC3. Epo stimulation of HEK 293T cells transfected with Epo receptor and TRPC3 resulted in a dose-dependent increase in [Ca(2+)](i), which required extracellular calcium influx. Treatment with the phospholipase C (PLC) inhibitor U-73122 or down-regulation of PLCgamma1 by RNA interference inhibited the Epo-stimulated increase in [Ca(2+)](i) in TRPC3-transfected HEK 293T cells and in primary human erythroid precursors, demonstrating a requirement for PLC. TRPC3 associated with PLCgamma, and substitution of predicted PLCgamma Src homology 2 binding sites (Y226F, Y555F, Y648F, and Y674F) on TRPC3 reduced the interaction of TRPC3 with PLCgamma and inhibited the rise in [Ca(2+)](i). Substitution of Tyr(226) alone with phenylalanine significantly reduced the Epo-stimulated increase in [Ca(2+)](i) but not the association of PLCgamma with TRPC3. PLC activation results in production of inositol 1,4,5-trisphosphate (IP(3)). To determine whether IP(3) is involved in Epo activation of TRPC3, TRPC3 mutants were prepared with substitution or deletion of COOH-terminal IP(3) receptor (IP(3)R) binding domains. In cells expressing TRPC3 with mutant IP(3)R binding sites and Epo receptor, interaction of IP(3)R with TRPC3 was abolished, and Epo-modulated increase in [Ca(2+)](i) was reduced. Our data demonstrate that Epo modulates TRPC3 activation through a PLCgamma-mediated process that requires interaction of PLCgamma and IP(3)R with TRPC3. They also show that TRPC3 Tyr(226) is critical in Epo-dependent activation of TRPC3. These data demonstrate a redundancy of TRPC channel activation mechanisms by widely different agonists.  相似文献   

17.
Herpes simplex virus 1 (HSV-1) replication initiates inflammation and angiogenesis responses in the cornea to result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced vision impairment. Chemokines are secreted to modulate HSK by recruiting leukocytes, which affect virus growth, and by influencing angiogenesis. The present study used a murine infection model to investigate the significance of the chemokine CXC chemokine ligand 10 (CXCL10; gamma interferon-inducible protein 10 [IP-10]) in HSK. Here, we show that HSV-1 infection of the cornea induced CXCL10 protein expression in epithelial cells. The corneas of mice with a targeted disruption of the gene encoding CXCL10 displayed decreases in levels of neutrophil-attracting cytokine (interleukin-6), primary neutrophil influx, and viral clearance 2 or 3 days postinfection. Subsequently, absence of CXCL10 aggravated HSK with elevated levels of interleukin-6, chemokines for CD4+ T cells and/or neutrophils (macrophage inflammatory protein-1α and macrophage inflammatory protein-2), angiogenic factor (vascular endothelial growth factor A), and secondary neutrophil influx, as well as infiltration of CD4+ T cells to exacerbate opacity and angiogenesis in the cornea at 14 and up to 28 days postinfection. Our results collectively show that endogenous CXCL10 contributes to recruit the primary neutrophil influx and to affect the expression of cytokines, chemokines, and angiogenic factors as well as to reduce the viral titer and HSK severity.  相似文献   

18.
Calcium channel blockers inhibit galvanotaxis in human keratinocytes   总被引:1,自引:0,他引:1  
Directed migration of keratinocytes is essential for wound healing. The migration of human keratinocytes in vitro is strongly influenced by the presence of a physiological electric field and these cells migrate towards the negative pole of such a field (galvanotaxis). We have previously shown that the depletion of extracellular calcium blocks the directional migration of cultured human keratinocytes in an electric field (Fang et al., 1998; J Invest Dermatol 111:751-756). Here we further investigate the role of calcium influx on the directionality and migration speed of keratinocytes during electric field exposure with the use of Ca(2+) channel blockers. A constant, physiological electric field strength of 100 mV/mm was imposed on the cultured cells for 1 h. To determine the role of calcium influx during galvanotaxis we tested the effects of the voltage-dependent cation channel blockers, verapamil and amiloride, as well as the inorganic Ca(2+) channel blockers, Ni(2+) and Gd(3+) and the Ca(2+) substitute, Sr(2+), on the speed and directionality of keratinocyte migration during galvanotaxis. Neither amiloride (10 microM) nor verapamil (10 microM) had any effect on the galvanotaxis response. Therefore, calcium influx through amiloride-sensitive channels is not required for galvanotaxis, and membrane depolarization via K(+) channel activity is also not required. In contrast, Sr(2+) (5 mM), Ni(2+) (1-5 mM), and Gd(3+) (100 microM) all significantly inhibit the directional migratory response to some degree. While Sr(2+) strongly inhibits directed migration, the cells exhibit nearly normal migration speeds. These findings suggest that calcium influx through Ca(2+) channels is required for directed migration of keratinocytes during galvanotaxis and that directional migration and migration speed are probably controlled by separate mechanisms.  相似文献   

19.
Homocysteine has been reported to inhibit endothelial cell proliferation, which is closely related to angiogenesis. However, the relationship between homocysteine and angiogenesis is unknown. To clarify whether homocysteine would inhibit angiogenesis in vitro and in vivo, we examined the effect of homocysteine on tube formation by bovine aortic endothelial cells (BAECs) and by human microvessel endothelial cell-1 (HMEC-1) in vitro, and on angiogenesis in vivo using the chorioallantoic membrane (CAM) assay, as well as on BAEC proliferation and migration. Homocysteine, but not cysteine, inhibited BAEC proliferation, migration, and tube formation in a dose-dependent manner at concentrations from 0 to 10 mM. Homocysteine also inhibited tube formation by HMEC-1s. In these assay, 50% inhibition was induced by about 1 mM homocysteine. In the in vivo CAM assay, 0, 10, 100, 500, and 1000 microgram homocysteine induced an avascular zone by 0, 0, 16.7, 53.3 and 76.5%, respectively, also showing a dose-dependent effect. It was suggested that homocysteine inhibited angiogenesis by preventing proliferation and migration of endothelial cells.  相似文献   

20.
We identified a novel erythropoietin (Epo)-induced protein (CIP29) in lysates of human UT-7/Epo leukemia cells using two-dimensional gel analysis and cloned its full-length cDNA. CIP29 contains 210 amino acids with a predicted MW of 24 kDa, and has a N-terminal SAP DNA-binding motif. CIP29 expression was higher in cancer and fetal tissues than in normal adult tissues. CIP29 mRNA expression is cytokine regulated in hematopoietic cells, being up-regulated by Epo in UT7/Epo cells, and by thrombopoietin (Tpo), FLT3 ligand (FL) and stem cell factor (SCF) in primary human CD34(+) cells. Up-regulation of CIP29 in UT7/Epo cells by Epo was associated with cell cycle progression but not with antiapoptosis. Epo withdrawal reduced CIP29 expression concomitant with cell cycle arrest. Overexpression of CIP29-GFP in HEK293 cells enhances cell cycle progression. CIP29 appears to be a new cytokine regulated protein involved in normal and cancer cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号