首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterosis is an important phenomenon, and the molecular mechanisms underlying heterosis are still enigmatic. microRNAs (miRNAs) play vital roles in many aspects of plant development. A set of miRNAs was selected to investigate the roles of miRNAs in heterosis displayed in a superhybrid rice. We analysed the expression patterns of miRNAs in different organs and developmental stages of the superhybrid rice and its parental lines. All possible modes of miRNA action were observed, including additive, high‐ and low‐parent value, above high‐ and below low‐parent value. Different organs and developmental stages exhibited different modes of miRNA expression. Overall, the non‐additive mode is the predominant expression pattern of miRNAs observed in this superhybrid. Many heterotic QTL intervals harbour miRNAs, whose expression patterns reveal their specific roles in different organs and developmental stages. miRNAs regulate the expression levels of target genes that have important functions in plant development. The predominant non‐additive mode of miRNA expression pattern in the hybrid suggests that miRNAs play critical roles in hybrid development, in particular, those miRNAs located in the heterotic QTL intervals may have important roles in heterosis. Our research sheds new light on understanding of the molecular mechanisms of heterosis.  相似文献   

2.
Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation.  相似文献   

3.
Lan Y  Su N  Shen Y  Zhang R  Wu F  Cheng Z  Wang J  Zhang X  Guo X  Lei C  Wang J  Jiang L  Mao L  Wan J 《BMC genomics》2012,13(1):264
ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) modulate gene expression in different tissues and at diverse developmental stages, including grain development in japonica rice. To identify novel miRNAs in indica rice and to study their expression patterns during the entire grain filling process, small RNAs from all stages of grain development were sequenced and their expression patterns were studied using customized miRNA chips. RESULTS: A total of 21 conserved and 91 non-conserved miRNA families were found in developing indica grains. We also discovered 11 potential novel miRNAs based on the presence of their miRNA*s. Expression patterns of these identified miRNAs were analyzed using customized miRNA chips. The results showed that during the filling phase about half of the detected miRNAs were up-regulated, whereas the remainder were down-regulated. Predicted targets of differentially expressed miRNAs may participate in carbohydrate metabolism, hormone signaling and pathways associated with seed maturity, suggesting potentially important roles in rice grain development. CONCLUSIONS: This study is the first genome-wide investigation of miRNAs during the grain-filling phase of an indica variety of rice. The novel miRNAs identified might be involved in new miRNA regulatory pathways for grain development. The complexity of these miRNAs and their targets and interactions require further study to obtain a better understanding of the molecular mechanisms underlying grain development. Key words: miRNA, grain filling, indica rice.  相似文献   

4.
MicroRNAs(miRNAs) are small non-coding RNAs that regulate a variety of biological processes. miRNA expression often exhibits spatial and temporal specificity. However, genome-wide miRNA expression patterns in different organs during development of Arabidopsis thaliana have not yet been systemically investigated. In this study, we sequenced small RNA libraries generated from 27 different organ/tissue types, which cover the entire life cycle of Arabidopsis. Analysis of the sequencing data revealed that most miRNAs are ubiquitously expressed, whereas a small set of miRNAs display highly specific expression patterns. In addition, different miRNA members within the same family have distinct spatial and temporal expression patterns. Moreover, we found that some miRNAs are produced from different arms of their hairpin precursors at different developmental stages. This work provides new insights into the regulation of miRNA biogenesis and a rich resource for future investigation of miRNA functions in Arabidopsis.  相似文献   

5.
6.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. MiRNA expression often exhibits spatial and temporal specificity. However, genome-wide miRNA expression patterns in different organs during development of Arabidopsis thaliana have not yet been systemically investigated. In this study, we sequenced small RNA libraries generated from 27 different organ/tissue types, which cover the entire life cycle of Arabidopsis. Analysis of the sequencing data revealed that most miRNAs are ubiquitously expressed, whereas a small set of miRNAs display highly specific expression patterns. In addition, different miRNA members within the same family have distinct spatial and temporal expression patterns. Moreover, we found that some miRNAs are produced from different arms of their hairpin precursors at different developmental stages. This work provides new insights into the regulation of miRNA biogenesis and a rich resource for future investigation of miRNA functions in Arabidopsis.  相似文献   

7.
Yu X  Zhou Q  Li SC  Luo Q  Cai Y  Lin WC  Chen H  Yang Y  Hu S  Yu J 《PloS one》2008,3(8):e2997
  相似文献   

8.
9.
10.
11.
MicroRNAs and Their Cross-Talks in Plant Development   总被引:1,自引:0,他引:1  
Plant development is a complex process influenced by exogenous and endogenous elements. A series of postembryonic developmental events is involved to form the final architecture and contend with the changing environment. MicroRNA (miRNA) is one of endogenous non-coding RNAs, which plays an important role in plant developmental regulation. In this review, we summarized 34 miRNA families that are closely associated with plant development. Among these families, nine are expressed only in specific organs, whereas 20 families are expressed in at least two different organs. It is known that some miRNAs are expressed across most processes of plant growth, while some appear only at particular developmental stages or under special environmental conditions such as drought, waterlogging and short-day time. These miRNAs execute their diverse functions by regulating developmental gene expression levels, interacting with phytohormone signaling response, participating in the biogenesis of ta-siRNAs and affecting the production of miRNAs.  相似文献   

12.
13.
MicroRNAs (miRNAs) have been shown to play crucial roles in the regulation of plant development. In this study, high-throughput RNA-sequencing technology was used to identify novel miRNAs, and to reveal miRNAs expression patterns at different developmental stages during rice (Oryza sativa L.) grain filling. A total of 434 known miRNAs (380, 402, 390 and 392 at 5, 7, 12 and 17 days after fertilization, respectively.) were obtained from rice grain. The expression profiles of these identified miRNAs were analyzed and the results showed that 161 known miRNAs were differentially expressed during grain development, a high proportion of which were up-regulated from 5 to 7 days after fertilization. In addition, sixty novel miRNAs were identified, and five of these were further validated experimentally. Additional analysis showed that the predicted targets of the differentially expressed miRNAs may participate in signal transduction, carbohydrate and nitrogen metabolism, the response to stimuli and epigenetic regulation. In this study, differences were revealed in the composition and expression profiles of miRNAs among individual developmental stages during the rice grain filling process, and miRNA editing events were also observed, analyzed and validated during this process. The results provide novel insight into the dynamic profiles of miRNAs in developing rice grain and contribute to the understanding of the regulatory roles of miRNAs in grain filling.  相似文献   

14.
15.
Shao P  Zhou H  Xiao ZD  He JH  Huang MB  Chen YQ  Qu LH 《Gene》2008,418(1-2):34-40
MicroRNAs (miRNAs) represent a family of small noncoding RNAs with important regulatory roles in diverse biological processes ranging from cell differentiation to organism development. In chickens, the full set of miRNAs and the expression patterns of miRNAs during development are still poorly understood when compared to the other vertebrates. In this study, we identified 29 novel miRNAs and 140 potential miRNA loci in the chicken genome by combining the experimental and computational analyses. Detailed expression patterns of 49 miRNAs were first characterized by Northern blotting and indicated the cooperativity of the miRNA expression with their function in embryogenesis and organogenesis. Twenty-seven miRNA clusters were systematically evaluated in the chicken genome and diverse expression patterns for closely linked miRNAs were observed. Our results significantly expand the set of known miRNAs in the chicken and provide the basis for understanding the structural and functional evolution of miRNA genes in vertebrates.  相似文献   

16.
微小RNA(microRNA, miRNA)是一类长度在22 nt左右的内源非编码小RNA,广泛存在于动物、植物、病毒等多种有机体中,是机体正常衰老与疾病的重要调控因子。本文对果蝇不同生长时期miRNA的表达模式、主要衰老相关信号通路以及与衰老相关的miRNA进行了综述。在果蝇的不同发育时期均有特定的miRNA发挥重要作用,其表达模式与功能相关;miRNA参与了主要衰老分子信号通路的调控,如胰岛素/胰岛素样生长因子(IIS)通路和雷帕霉素靶蛋白(TOR)通路。研究表明,miRNA通过调控衰老相关信号通路中的靶基因,进而促进或延缓果蝇衰老,如miR-34, miR-8, miR-14, miR let7和miR-277等。因此,研究参与衰老调控的miRNA,为阐明衰老机制及抗衰老药物的设计奠定了基础。  相似文献   

17.
18.
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in eukaryotes. However, the information about miRNAs population and their regulatory functions involving in soybean seed development remains incomplete. Base on the Dicer-like1-mediated cleavage signals during miRNA processing could be employed for novel miRNA discovery, a genome-wide search for miRNA candidates involved in seed development was carried out. As a result, 17 novel miRNAs, 14 isoforms of miRNA (isomiRs) and 31 previously validated miRNAs were discovered. These novel miRNAs and isomiRs represented tissue-specific expression and the isomiRs showed significantly higher abundance than that of their miRNA counterparts in different tissues. After target prediction and degradome sequencing data-based validation, 13 novel miRNA–target pairs were further identified. Besides, five targets of 22-nt iso-gma-miR393h were found to be triggered to produce secondary trans-acting siRNA (ta-siRNAs). Summarily, our results could expand the repertoire of miRNAs with potentially important functions in soybean.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号