首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several species of the fungus Trichoderma can promote plant health and are widely used as commercial biopesticides. Beneficial effects of this fungus are attributed to various mechanisms such as mycoparasitism, plant-growth promotion, increased stress tolerance and elicitation of induced systemic resistance against pathogens via jasmonic acid/ethylene-dependent pathways. Despite such well-established effects on pathogens, surprisingly little is known about the influence of Trichoderma on plant defences against herbivorous insects. This study investigated whether soil-supplementation of the established biocontrol agent Trichoderma atroviride LU132 affected the performance of oilseed rape (Brassica napus) and the development of Plutella xylostella caterpillars. Furthermore, induction and priming of defence-related phytohormones, genes and secondary metabolites by fungus and herbivore were assessed. Plants colonized by T. atroviride LU132 had significantly larger root and shoot biomass than controls. No effects of fungal inoculation were found on herbivore development. Leaf feeding of the herbivore induced higher jasmonic acid levels, but this was not influenced by fungal treatment. Similarly, the defence-related genes MYC2 and TPI were induced by herbivory but not primed or induced by T. atroviride. Expression of the gene PDF1.2 was repressed by herbivore feeding while no effects on the gene ACO and glucosinolates were observed. We conclude that T. atroviride LU132 has positive effects on the growth of oilseed but it does not enhance above-ground insect defences.  相似文献   

3.
4.
To investigate whether enzyme production can be enhanced in the Trichoderma reesei industrial hyperproducer strain RUT C30 by manipulation of cellulase regulation, the positive regulator Xyr1 was constitutively expressed under the control of the strong T. reesei pdc promoter, resulting in significantly enhanced cellulase activity in the transformant during growth on cellulose. In addition, constitutive expression of xyr1 combined with downregulation of the negative regulator encoding gene ace1 further increased cellulase and xylanase activities. Compared with RUT C30, the resulting transformant exhibited 103, 114, and 134 % greater total secreted protein levels, filter paper activity, and CMCase activity, respectively. Surprisingly, strong increases in xyr1 basal expression levels resulted in very high levels of CMCase activity during growth on glucose. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression, and suggest an attractive new single-step approach for increasing total cellulase productivity in T. reesei.  相似文献   

5.
6.
7.
8.
9.
10.
Plant tissue colonization by Trichoderma atroviride plays a critical role in the reduction of diseases caused by phytopathogenic fungi, but this process has not been thoroughly studied in situ. We monitored in situ interactions between gfp-tagged biocontrol strains of T. atroviride and soilborne plant pathogens that were grown in cocultures and on cucumber seeds by confocal scanning laser microscopy and fluorescence stereomicroscopy. Spores of T. atroviride adhered to Pythium ultimum mycelia in coculture experiments. In mycoparasitic interactions of T. atroviride with P. ultimum or Rhizoctonia solani, the mycoparasitic hyphae grew alongside the pathogen mycelia, and this was followed by coiling and formation of specialized structures similar to hooks, appressoria, and papillae. The morphological changes observed depended on the pathogen tested. Branching of T. atroviride mycelium appeared to be an active response to the presence of the pathogenic host. Mycoparasitism of P. ultimum by T. atroviride occurred on cucumber seed surfaces while the seeds were germinating. The interaction of these fungi on the cucumber seeds was similar to the interaction observed in coculture experiments. Green fluorescent protein expression under the control of host-inducible promoters was also studied. The induction of specific Trichoderma genes was monitored visually in cocultures, on plant surfaces, and in soil in the presence of colloidal chitin or Rhizoctonia by confocal microscopy and fluorescence stereomicroscopy. These tools allowed initiation of the mycoparasitic gene expression cascade to be monitored in vivo.  相似文献   

11.
Trichoderma species are used commercially as biocontrol agents against a number of phytopathogenic fungi due to their mycoparasitic characterisitics. The mycoparasitic response is induced when Trichoderma specifically recognizes the presence of the host fungus and transduces the host-derived signals to their respective regulatory targets. We made deletion mutants of the tga3 gene of Trichoderma atroviride, which encodes a novel G protein α subunit that belongs to subgroup III of fungal Gα proteins. Δtga3 mutants had changes in vegetative growth, conidiation, and conidial germination and reduced intracellular cyclic AMP levels. These mutants were avirulent in direct confrontation assays with Rhizoctonia solani or Botrytis cinerea, and mycoparasitism-related infection structures were not formed. When induced with colloidal chitin or N-acetylglucosamine in liquid culture, the mutants had reduced extracellular chitinase activity even though the chitinase-encoding genes ech42 and nag1 were transcribed at a significantly higher rate than they were in the wild type. Addition of exogenous cyclic AMP did not suppress the altered phenotype or restore mycoparasitic overgrowth, although it did restore the ability to produce the infection structures. Thus, T. atroviride Tga3 has a general role in vegetative growth and can alter mycoparasitism-related characteristics, such as infection structure formation and chitinase gene expression.  相似文献   

12.
13.
Pestalotiopsis sp. is a mycoparasite of the plant pathogen Aecidium wenshanense. To further understand the mycoparasitism mechanism of Pestalotiopsis sp., we assembled and analyzed its genome. The genome of Pestalotiopsis sp. strain PG52 was assembled into 335 scaffolds and had a size of 58.01 Mb. A total of 20,023 predicted genes and proteins were annotated. This study compared PG52 with the mycoparasites Trichoderma harzianum, Trichoderma atroviride, and Trichoderma virens. This study reveals the entirely different mycoparasitism mechanism of Pestalotiopsis compared to Trichoderma and reveals this mycoparasite’s strong ability to produce secondary metabolites.  相似文献   

14.

Background

Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.

Results

Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.

Conclusions

The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.  相似文献   

15.
16.
17.
The genus Trichoderma includes species of great biotechnological value, both for their mycoparasitic activities and for their ability to produce extracellular hydrolytic enzymes. Although activity of extracellular laccase has previously been reported in Trichoderma spp., the possible number of isoenzymes is still unknown, as are the structural and functional characteristics of both the genes and the putative proteins. In this study, the system of laccases sensu stricto in the Trichoderma species, the genomes of which are publicly available, were analyzed using bioinformatic tools. The intron/exon structure of the genes and the identification of specific motifs in the sequence of amino acids of the proteins generated in silico allow for clear differentiation between extracellular and intracellular enzymes. Phylogenetic analysis suggests that the common ancestor of the genus possessed a functional gene for each one of these enzymes, which is a characteristic preserved in T. atroviride and T. virens. This analysis also reveals that T. harzianum and T. reesei only retained the intracellular activity, whereas T. asperellum added an extracellular isoenzyme acquired through horizontal gene transfer during the mycoparasitic process. The evolutionary analysis shows that in general, extracellular laccases are subjected to purifying selection, and intracellular laccases show neutral evolution. The data provided by the present study will enable the generation of experimental approximations to better understand the physiological role of laccases in the genus Trichoderma and to increase their biotechnological potential.  相似文献   

18.
19.
ACEI、ACEII和Xyr1是康氏木霉中调控纤维素酶基因表达的转录因子。体外实验已证实ACEI和Xyr1可与cbh1启动子上的287bp序列(-304bp~-18bp)结合从而调控cbh1基因转录,但ACEII是否可与此序列结合仍未清楚。为进一步研究ACEII调控纤维素酶基因表达的机制,利用PCR技术扩增康氏木霉ACEII DNA结合区的基因序列,并使其在大肠杆菌中表达。凝胶迁移率移动试验表明ACEII DNA结合区不能与cbh1启动子的287bp序列结合。提示了康氏木霉cbh1基因在诱导表达时起调控作用的主要是Xyr1,而不是ACEII。这对阐明真菌纤维素酶基因表达调控的分子机制具有重要的意义。  相似文献   

20.
Trichoderma species are widely used in agriculture as biofungicides. These fungi are rich source of secondary metabolites and the mycoparasitic species are enriched in genes for biosynthesis of secondary metabolites. Most often, genes for secondary metabolism are clustered in fungal genomes. Previously, no systematic study was undertaken to identify the secondary-metabolism related gene clusters in Trichoderma genomes. In the present study, a survey of the three Trichoderma genomes viz. T. reesei, T. atroviride and T. virens, was made to identify the putative gene clusters associated with secondary metabolism. In T. reesei genome, we identified one new NRPS and 6 new PKS clusters, which is much less than that found in T. atroviride (4 and 8) and T. virens (8 and 7). This work would pave the way for discovery of novel secondary metabolites and pathways in Trichoderma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号