首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N. Soethe  J. Lehmann  C. Engels 《Plant and Soil》2006,279(1-2):173-185
Root architecture of tree species was investigated at two different altitudes in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow soils, while slope angles of both sites were comparable (20–50°). Three tree species typical for the montane forest at 1900 m (Graffenrieda emarginata (Ruiz & Pav.) Triana (Melastomataceae), Clethra revoluta (Ruiz & Pav.) Spreng. (Clethraceae), Vismia tomentosa Ruiz & Pav. (Clusiaceae)) and for the elfin forest at 3000 m (Weinmannia loxensis Harling (Cunoniaceae), Clusia spec. (Clusiacaea) Styrax foveolaria Perkins (Styraceae)) were examined. At 1900 m, 92% of the trees grew upright, in comparison to 52% at 3000 m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all trees with tap roots or with shoots connected by coarse rhizomes, 83% of the trees with stilt roots, and 50% of the trees in which stems or roots were supported by other trees grew upright, suggesting that these characteristics were relevant for tree stability. Root system morphology differed markedly between altitudes. In contrast to 1900 m, where 20% of structural roots originated in the deeper mineral soil, root origin at 3000 m was restricted to the forest floor. The mean ratio of root cross sectional area to tree height decreased significantly from 6.1 × 10−3 m2 m−1 at 1900 m to 3.2 × 10−3 m2 m−1 at 3000 m. The extent of root asymmetry increased significantly from 0.29 at 1900 m to 0.62 at 3000 m. This was accompanied by a significantly lower number of dominant roots at 3000 m (2.3 compared to 3.8 at 1900 m). In conclusion, native tree species growing in tropical montane and elfin forests show a variety of root traits that improve tree stability. Root system asymmetry is less important for tree stability where anchorage is provided by a deep and solid root–soil plate. When deep rooting is impeded, root traits improving the horizontal extension of the root–soil plate are more pronounced or occur more frequently. Furthermore, mutual mechanical support of roots and stems of neighboring trees seems to be an appropriate mechanism to provide anchorage in soils with low bulk density and in environments with high wind speeds.  相似文献   

2.
Invasive species, local plant communities and invaded ecosystems change over space and time. Quantifying this change may lead to a better understanding of the ecology and the effective management of invasive species. We used data on density of the highly invasive shrub Lantana camara (lantana) for the period 1990–2008 from a 50 ha permanent plot in a seasonally dry tropical forest of Mudumalai in southern India. We used a cumulative link mixed-effects regression approach to model the transition of lantana from one qualitative density state to another as a function of biotic factors such as indicators of competition from local species (lantana itself, perennial grasses, invasive Chromolaena odorata, the native shrub Helicteres isora and basal area of native trees) and abiotic factors such as fire frequency, inter-annual variability of rainfall and relative soil moisture. The density of lantana increased substantially during the study period. Lantana density was negatively associated with the density of H. isora, positively associated with basal area of native trees, but not affected by the presence of grasses or other invasive species. In the absence of fire, lantana density increased with increasing rainfall. When fires occurred, transitions to higher densities occurred at low rainfall values. In drier regions, lantana changed from low to high density as rainfall increased while in wetter regions of the plot, lantana persisted in the dense category irrespective of rainfall. Lantana seems to effectively utilize resources distributed in space and time to its advantage, thus outcompeting local species and maintaining a population that is not yet self-limiting. High-risk areas and years could potentially be identified based on inferences from this study for facilitating management of lantana in tropical dry forests.  相似文献   

3.
Polymorphic allozyme loci were used to estimate outcrossing rates for three tree species from a disturbed dry forest in southern Costa Rica. Estimates of the multilocus outcrossing rates of Cedrela odorata and Jacaranda copaia were 0.969 and 0.982, respectively, and suggest that these species may be self-incompatible. The subcanopy tree Stemmadenia donnell-smithii also demonstrated little self-fertilization based on an estimated outcrossing rate of 0.896. Significant heterogeneity in pollen allele frequencies among maternal trees was detected for at least two enzyme loci for each species. A test of correlated mating between progeny of S. donnell-smithii revealed that all seeds within a fruit were singly sired. In addition, the low estimates of biparental inbreeding and significant differences in pollen and ovule allele frequencies for this species suggest that gene flow into the sampled forest fragment may occur. The implications of deforestation on the mating systems of these tropical tree taxa are discussed.  相似文献   

4.
The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more), which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait). In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits) but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments) also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges).  相似文献   

5.
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling.  相似文献   

6.
We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.  相似文献   

7.
Storage and Flux of Nutrients in a Dry Tropical Forest in India   总被引:1,自引:0,他引:1  
SINGH  LALJI; SINGH  J S. 《Annals of botany》1991,68(3):275-284
Storage and flux of N, P, Ca, K and Na were studied in a drytropical forest The nutrient concentrations in different growthforms were in the order herb > shrub > tree, whereas thestanding state of nutrients followed the order tree > shrub> herb The total storage (kg ha–1) in vegetation amountedto 567 N, 37 P, 278 Ca, 256 K and 46 Na The share of above-groundparts in vegetation storage was 82 % for N, 83 % for P, 76 %for Ca, 85 % for K and 79 % for Na From 56 to 71 % of foliarN, P and K was withdrawn during senescence Nutrient input (kgha–1 year–1) from the vegetation (above-ground +below-ground) to forest floor amounted to 115 N, 8 P, 62 Ca,38 K and 10 Na compared to total net annual uptake (kg ha–1)of 143 N, 10 P, 78 Ca, 52 K and 12 Na, indicating marginal accumulationin the system Fine roots were as important a pathway of nutrientreturn as leaf litter Turnover rate and turnover time for differentnutrients on the forest floor ranged, respectively, between72 and 83 % and 12 and 1 39 years Dry tropical forest, nutnent concentration, standing state, uptake, internal cycling, turnover  相似文献   

8.
The diversity of tropical dry forests is poorly described and their regeneration ecology not well understood, however they are under severe threat of conversion and degradation. The Hellshire Hills constitute a dry limestone forest reserve on the south coast of Jamaica that is of high conservation value. In order to describe the structure and composition of this forest and assess the extent to which the population structures of its tree species do characterize their regeneration ecologies, pre-disturbance structure, floristics and seedling populations were compared with post-disturbance species responses in twelve 15 m × 15 m permanent sample plots which were laid out in a blocked design in April 1998, giving a total sample area of 0.27 ha. These plots were subjected to disturbance in April 1999 (cutting) with each of four blocks being assigned with two randomly allocated treatment plots (partially and clear cut) and one control plot (uncut). A total of 1278 trees (≥2 cm DBH) and 7863 seedlings and saplings (0–2 mm and 2–20 mm root collar diameter (RCD) respectively), comprising 60 and 52 species, respectively, were sampled in the plots prior to disturbance. The species-area curve for trees reached a maximum at 0.20 ha, and abundance was widely distributed amongst the species (26 had importance values greater than 1%); four species were notably codominant (with importance values between 7 and 8%). The forest stand structure had a reverse J-shaped curve for tree and for seedling/sapling size-class distributions, which indicated that the forest as a whole was probably regenerating adequately. From an analysis based on adult and sapling size-class distributions (SCDs), 21 species with 15 or more individuals were classified into 3 groups. Many of the species (15 of the 21), had flat adult SCDs that deviate from the whole-community reverse J-shaped SCD. However, sapling SCDs for 6 of the 15 species were strongly positive indicating the potential for their populations to be sustained by recruitment from the saplings present. No general association was found between these SCD species groupings and the actual ability of the species to recover from disturbance. Analysis of post-disturbance response revealed that for only 9 of the 21 species did adult SCDs provide adequate prediction, but for an additional 6 of the species information on sapling SCDs improved the accuracy of prediction if the ‘release’ of saplings or smaller individuals predominated recovery. However in this forest, recovery following disturbance which left stem and roots in place is predominantly by coppice regrowth, and there were no significant correlations found between adult SCDs and the species’ ability to coppice.  相似文献   

9.
We tested the hypothesis that, where fire has historically been infrequent, wooded areas that have been invaded by grasses and converted to grassland by fire are predisposed to future fire compared to adjacent areas that remain wooded; thus, an initial forest fire may promote future fires. We compared microclimate between a grass-dominated burned area and a nearby grass-invaded woodland that has not burned in recent history, both located in the submontane dry forest of Hawaii Volcanoes National Park. The results were used to parameterize BEHAVE, a fire behavior prediction model developed by the USDA Forest Service. The model's predictions include probability of ignition, intensity, rate of spread, and tree mortality. Contrary to expectations, daytime hourly mean temperatures were higher and relative humidity was lower in the woodland site. However, the differences in temperature and humidity were not great enough to affect spread rate or probability of ignition. Wind speeds were substantially greater in the grassland, and this was most important in driving differences in modeled fire spread. Given similar synoptic conditions, a fire started in the grassland can be expected to spread an order of magnitude faster than one started in the woodland.  相似文献   

10.
Seed Ecology of Woody Species in a Caribbean Dry Forest   总被引:1,自引:0,他引:1  
Peak flowering activity among woody species in the tropical dry forests of St. John, U.S. Virgin Islands, coincided with the brief spring rainy season but continued at moderate levels for six months, abating with the autumn rains. Fruit maturation showed a major peak in the long winter dry season and a minor crest during the summer dry season. Seeds of wind-dispersed species disseminated mainly during the winter dry season, while animal dispersal of seeds (74% of all woody species) followed the bimodal pattern (for wet and dry seasons) described for the community as a whole. Under shadehouse conditions, most dry forest tree species germinated well (> 80%) and emerged promptly (within four weeks of planting) and synchronously (90% emergence within a four-week interval). Nine of 29 species tested in the shadehouse manifested dormancy of at least six weeks. Seed germinability varied among tree species, and the viability of most species began to decline following six months of dry storage. Few species retained high germinability after nine months of dry storage. The species composition of soil seed banks did not correspond closely with above-ground communities on three forested sites of varying stand age. In the youngest stand (35 years old), dominated by the weedy, arborescent legume Leucaena leucocephala, the soil seed bank was also dominated by this species, but no seeds of any other tree species were found in the soil samples. Seeds of native trees were scarcely encountered (only one indigenous species) in soil seed bank samples of three forest sites. Local seed rain from less disturbed forest may not be sufficient for prompt recovery of the dry forest community on degraded sites.  相似文献   

11.
展现在您眼前的神态各异的亚洲象,是热带雨林里的“旗舰种”。西双版纳拥有这样一个显赫的标志种.是大自然赐予的福分和财富。  相似文献   

12.
The role of the native species richness and density in ecosystem invasibility is a matter of concern for both ecologists and managers. We tested the hypothesis that the invasiveness of Urochloa arrecta (non-native in the Neotropics) is negatively affected by the species richness and abundance of native aquatic macrophytes in freshwater ecosystems. We first created four levels of macrophyte richness in a greenhouse (richness experiment), and we then manipulated the densities of the same native species in a second experiment (density experiment). When the native macrophytes were adults, fragments of U. arrecta were added, and their growth was assessed. Our results from the richness experiment corroborated the hypothesis of a negative relationship between the native species richness and the growth of U. arrecta, as measured by sprout length and root biomass. However, the resistance to invasion was not attributed to the presence of a particular native species with a greater competitive ability. In the density experiment, U. arrecta growth decreased significantly with an increased density of all five of the native species. Density strongly affected the performance of the Poaceae in a negative manner, suggesting that patches that are densely colonized by native macrophytes and less subject to disturbances will be more resistant to invasion than those that are poorly colonized and more commonly subjected to disturbances. Our density experiment also showed that some species exhibit a higher competitive ability than others (sampling effect). Although native richness and abundance clearly limit the colonization and establishment of U. arrecta, these factors cannot completely prevent the invasion of aquatic ecosystems by this Poaceae species.  相似文献   

13.
Hawaii's dry forests are among the most endangered of all ecosystems in the archipelago. Invasion of alien plant species into these ecosystems is one of the most significant threats to on-going efforts to preserve and restore Hawaii's remaining dry forests. Comparing the physiological performance of alien and native species can offer causal explanations behind the relative success of alien plant invasions within Hawaiian dry forests and elsewhere. We compared maximum rates of net CO2 assimilation, water-use efficiency (WUE), daily carbon gain, and leaf morphology for three native and two alien shrubby species growing within 1-m2 plots under two natural light (sub-canopy shade relative to open full sunlight) treatments. Maximum rates of net CO2 assimilation were similar between alien and native species (8.15 vs. 7.12molm–2s–1, respectively), however, native plants exhibited lower stomatal conductance and higher instantaneous WUE than alien plants in all treatments (0.13molm–2s–1 and 72.36mol CO2mol H2O–1 against 0.23 and 58.78, respectively). Alien plants had approximately 65% more aboveground biomass than native plants. This result may reflect differential seed production and seed bank viability between native and alien species. We found an overall strong, positive correlation between species-specific physiological traits and final species aboveground biomass. Based on this type of information we can predict species-specific boundaries across light gradients, and focus restoration efforts accordingly.  相似文献   

14.
15.
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest.  相似文献   

16.
17.
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.  相似文献   

18.
We investigated the influence of rainfall attributes on litter decomposition over an 8-year period in a well-preserved tropical dry forest ecosystem in western Mexico. We examined the relationship between the size and number of rainfall events and rainy-season litter decomposition rates and determined if this relationship varied along a landscape gradient. A mass balance approach was used to estimate decomposition rate in four permanent 2,400 m2 plots located in two small watersheds. Watershed I included three plots in different landscape positions (upper, middle, and lower) in the elevation gradient, whereas Watershed IV included one plot in the middle position. Surface litter C mass was lower in the rainy than in the dry season in all plots in response to seasonal fluctuations in rainfall. The frequency of small (≤5 mm) and medium (5.1–9.9 mm) size rainfall events largely did not correlate with litter decomposition, but the frequency of large events (≥10 mm) had a positive correlation with decomposition rates (P < 0.05), except in plot IV (P < 0.1). Decomposition rates were similar among plots at the different landscape positions within Watershed I (P > 0.05). The relevance of large rainfall events (≥10 mm) in rainy-season litter decomposition suggests that changes in the precipitation regime which alter the frequency of these rainfall pulses or increase their variability would affect the vulnerability of the litter C and nutrient pools to extreme events.  相似文献   

19.
Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 –fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites. Restoration with plantings and exclusion of cattle and plantings was shown to be a successful strategy for attracting lepidopterans and cattle exclusion was the main factor explaining lepidopteran diversity.  相似文献   

20.
1989~1991年在温室和野外测定了香港40种次生林树木种类的种子寿命和发芽率.结果显示,在所测试的40种天然林树种中,60%的树种的种子寿命短于1年,仅有8个树种的种子寿命在1年以上.种子的寿命与种子在土壤中的发芽能力呈负相关的关系.种子发芽测定结果表明,大多数树种都可以在强光照条件(95%的日光)下发芽,但35%的测试树种不能在天然林下(07%~2%的日光)发芽.最后从植物生理生态的角度,探讨种子特征与香港次生林区系发展及香港现有次生林的演替现状  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号