首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature tropical forests are disappearing and secondary forests are becoming more abundant, thus there is an increasing need to understand the ecology and management of secondary forests. In the Yucatan Peninsula, Mexico, seasonally dry tropical forests are subject to frequent fire, and early-successional stands are extremely dense. We applied vegetation thinning (removal of all stems < 2 cm in diameter) to hasten secondary succession and open the understory to reduce the fire ladder in an 11-yr-old stand. We quantified the effect of vegetation thinning on above- and belowground carbon over 5 yr. Aboveground carbon included all standing vegetation and belowground carbon included fine roots and organic carbon in the Oi, Oe, and Oa soil horizons. Trees with diameter of 2–10 cm and > 10 cm had higher carbon accumulation rates in thinned plots than in control plots. Carbon stored in the Oi-horizon and the Oe > 2 mm fraction remained significantly higher in thinned plots even 5 yr after treatment. Carbon in fine roots was significantly higher in thinned plots, and radiocarbon (14C) data suggest that fine roots in thinned plots were recently produced in comparison with fine roots in control plots. We did not find significant differences in total ecosystem carbon after 5 yr (126 ± 6 and 136 ± 8 Mg C/ha, respectively). These results suggest rapid carbon recovery and support the hypothesis that young tropical forests thinned to hasten succession and reduce the fire hazard may have only a short-term negative impact on carbon accumulation in vegetation and soils.  相似文献   

2.
In seasonally dry tropical forests, tree species can be deciduous, remaining without leaves throughout the dry season, or evergreen, retaining their leaves throughout the dry season. Deciduous and evergreen trees specialize in habitats that differ in water availability (hillside and riparian forest, respectively) and in their exposure to herbivore attack (seasonal and continuous, respectively). We asked whether syndromes of leaf traits in deciduous and evergreen trees were consistent with hypothesized abiotic and biotic selective pressures in their respective habitat. We measured seven leaf traits in 19 deciduous and 11 evergreen tree species in a dry tropical forest in Western Mexico, and measured rates of herbivory on 23 of these species. We investigated the covariance of leaf traits in syndromes related to phenology and associated physiology, and to anti‐herbivory defense. We found evidence for syndromes that separated phenological strategies among four traits: toughness, water content, specific leaf area, and carbon:nitrogen (C:N) ratios. We found a trade‐off between two other traits: trichomes and latex. Overall, evergreen species exhibited lower rates of herbivory than deciduous species. Lower rates of herbivory were explained by a syndrome of higher toughness, lower water content, and higher C:N ratios, which are traits representative of evergreen trees. Phenology and trait syndromes did not exhibit significant phylogenetic signal, consistent with the hypothesis of evolutionary convergence among phenologies and associated leaf‐trait syndromes. Our results suggest that deciduous and evergreen trees could respond to differential water availability and herbivory in their respective habitats by converging on distinct leaf‐trait syndromes. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

3.
N. Soethe  J. Lehmann  C. Engels 《Plant and Soil》2006,279(1-2):173-185
Root architecture of tree species was investigated at two different altitudes in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow soils, while slope angles of both sites were comparable (20–50°). Three tree species typical for the montane forest at 1900 m (Graffenrieda emarginata (Ruiz & Pav.) Triana (Melastomataceae), Clethra revoluta (Ruiz & Pav.) Spreng. (Clethraceae), Vismia tomentosa Ruiz & Pav. (Clusiaceae)) and for the elfin forest at 3000 m (Weinmannia loxensis Harling (Cunoniaceae), Clusia spec. (Clusiacaea) Styrax foveolaria Perkins (Styraceae)) were examined. At 1900 m, 92% of the trees grew upright, in comparison to 52% at 3000 m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all trees with tap roots or with shoots connected by coarse rhizomes, 83% of the trees with stilt roots, and 50% of the trees in which stems or roots were supported by other trees grew upright, suggesting that these characteristics were relevant for tree stability. Root system morphology differed markedly between altitudes. In contrast to 1900 m, where 20% of structural roots originated in the deeper mineral soil, root origin at 3000 m was restricted to the forest floor. The mean ratio of root cross sectional area to tree height decreased significantly from 6.1 × 10−3 m2 m−1 at 1900 m to 3.2 × 10−3 m2 m−1 at 3000 m. The extent of root asymmetry increased significantly from 0.29 at 1900 m to 0.62 at 3000 m. This was accompanied by a significantly lower number of dominant roots at 3000 m (2.3 compared to 3.8 at 1900 m). In conclusion, native tree species growing in tropical montane and elfin forests show a variety of root traits that improve tree stability. Root system asymmetry is less important for tree stability where anchorage is provided by a deep and solid root–soil plate. When deep rooting is impeded, root traits improving the horizontal extension of the root–soil plate are more pronounced or occur more frequently. Furthermore, mutual mechanical support of roots and stems of neighboring trees seems to be an appropriate mechanism to provide anchorage in soils with low bulk density and in environments with high wind speeds.  相似文献   

4.
SINGH  LALJI; SINGH  J. S 《Annals of botany》1991,68(3):263-273
Species composition, plant biomass and net primary productivitywere studied on three sites of a dry tropical forest The forestwas characterized by small structure with 38–10.4 m2 ha–1tree and 3 1–7 8 m2 ha–1 shrub basal cover Speciesdiversity was highest for the mid-slope site while the concentrationof dominance was greatest for the hill-top stand The beta diversitywas 3 1 Total standing crop of vegetation averaged 66 98 t ha–1with 46 70 t ha–1 in the tree layer, 13.97 t ha–1in the shrub layer, 0.35 t ha–1 in the herb layer, 2 83t ha–1 in the litter layer and 3 13 t ha–1 in fineroots Of the total annual litterfall (4 88–6.71 t ha–1),69% was accounted for by leaves and 31% by non-leaf matter Netprimary production (NPP) ranged between 11 3 and 19 2 t ha–1year–1, to which the contributions of trees, shrubs andherbs averaged 72, 22 and 6%, respectively Contribution of rootsto NPP was substantial and ranged from 2 9 to 5 3 t ha–1year–1 A total of 83% of vegetation carbon was storedin the above-ground plant parts while the above-ground NPP wasresponsible for 72% of the total carbon input into the systemThe contribution of foliage, herbaceous vegetation and fineroots to carbon turnover was disproportionately larger comparedto their share in the total standing crop Carbon budgeting indicatedthat the forest was an accumulating system, over at least theshort term Dry tropical forest, biomass, litterfall, net primary production, carbon budget, carbon flux  相似文献   

5.
Lianas impose intense resource competition for light in the upper forest canopy by displaying dense foliage on top of tree crowns. Using repeated access with a construction crane, we studied the patterns of canopy colonization of the lianas Combretum fruticosum and Bonamia trichantha in a Neotropical dry forest in Panama. Combretum fruticosum flushed leaves just before the rainy season, and its standing leaf area quickly reached a peak in the early rainy season (May–June). In contrast, B. trichantha built up foliage area continuously throughout the rainy season and reached a peak in the late rainy season (November). Both species displayed the majority of leaves in full sun on the canopy surface, but C. fruticosum displayed a greater proportion of leaves (26%) in more shaded microsites than B. trichantha (12%). Self-shading within patches of liana leaves within the uppermost 40–50 cm of the canopy reduced light levels measured with photodiodes placed directly on leaves to 4–9 percent of light levels received by sun leaves. Many leaves of C. fruticosum acclimated to shade within a month following the strongly synchronized leaf flushing and persisted in deep shade. In contrast, B. trichantha produced short-lived leaves opportunistically in the sunniest locations. Species differences in degree of shade acclimation were also evident in terms of structural (leaf mass per area, and leaf toughness) and physiological characters (nitrogen content, leaf life span, and light compensation point). Contrasting leaf phenologies reflect differences in light exploitation and canopy colonization strategies of these two liana species.  相似文献   

6.
Invasive species, local plant communities and invaded ecosystems change over space and time. Quantifying this change may lead to a better understanding of the ecology and the effective management of invasive species. We used data on density of the highly invasive shrub Lantana camara (lantana) for the period 1990–2008 from a 50 ha permanent plot in a seasonally dry tropical forest of Mudumalai in southern India. We used a cumulative link mixed-effects regression approach to model the transition of lantana from one qualitative density state to another as a function of biotic factors such as indicators of competition from local species (lantana itself, perennial grasses, invasive Chromolaena odorata, the native shrub Helicteres isora and basal area of native trees) and abiotic factors such as fire frequency, inter-annual variability of rainfall and relative soil moisture. The density of lantana increased substantially during the study period. Lantana density was negatively associated with the density of H. isora, positively associated with basal area of native trees, but not affected by the presence of grasses or other invasive species. In the absence of fire, lantana density increased with increasing rainfall. When fires occurred, transitions to higher densities occurred at low rainfall values. In drier regions, lantana changed from low to high density as rainfall increased while in wetter regions of the plot, lantana persisted in the dense category irrespective of rainfall. Lantana seems to effectively utilize resources distributed in space and time to its advantage, thus outcompeting local species and maintaining a population that is not yet self-limiting. High-risk areas and years could potentially be identified based on inferences from this study for facilitating management of lantana in tropical dry forests.  相似文献   

7.
Woody tree species in seasonally dry tropical forests are known to have traits that help them to recover from recurring disturbances such as fire. Two such traits are resprouting and rapid post‐fire growth. We compared survival and growth rates of regenerating small‐sized individuals (juveniles) of woody tree species after dry season fire (February–March) at eight adjacent pairs of burnt and unburnt transects in a seasonally dry tropical forest in southern India. Juveniles were monitored at 3‐mo intervals between August 2009 and August 2010. High juvenile survivorship (>95%) was observed in both burnt and unburnt areas. Growth rates of juveniles, analyzed at the community level as well as for a few species individually (especially fast‐growing ones), were distinctly higher in burnt areas compared to unburnt areas after a fire event, particularly during the pre‐monsoon season immediately after a fire. Rapid growth by juveniles soon after a fire may be due to lowered competition from other vegetative forms such as grasses, possibly aided by the availability of resources stored belowground. Such an adaptation would allow a juvenile bank to be retained in the understory of a dry forest, from where individuals can grow to a possible fire‐tolerant size during favorable conditions.  相似文献   

8.
Polymorphic allozyme loci were used to estimate outcrossing rates for three tree species from a disturbed dry forest in southern Costa Rica. Estimates of the multilocus outcrossing rates of Cedrela odorata and Jacaranda copaia were 0.969 and 0.982, respectively, and suggest that these species may be self-incompatible. The subcanopy tree Stemmadenia donnell-smithii also demonstrated little self-fertilization based on an estimated outcrossing rate of 0.896. Significant heterogeneity in pollen allele frequencies among maternal trees was detected for at least two enzyme loci for each species. A test of correlated mating between progeny of S. donnell-smithii revealed that all seeds within a fruit were singly sired. In addition, the low estimates of biparental inbreeding and significant differences in pollen and ovule allele frequencies for this species suggest that gene flow into the sampled forest fragment may occur. The implications of deforestation on the mating systems of these tropical tree taxa are discussed.  相似文献   

9.
Factors influencing the niche differentiation of epiphytes have been determined for the epiphytic bromeliads that coexist in the seasonally dry forest of Chamela, Mexico. Over 40 percent of the bromeliad epiphytes were distributed in only 5 percent of the trees. The occurrence of compound leaves in host trees was highly correlated with abundance of epiphytes, as these allow scattered light to penetrate throughout the canopy. The effect of leaf type overrides the effect of bark type, the main factor determining seedling establishment in moist forests. Eight species had the atmospheric life form, while only two species had tanks, formed by overlapping leaf bases and associated to a lower drought tolerance. Distribution in the canopy is counter to that observed in moist forests, since tank species occur in the upper canopy. Tank life forms showed most annual carbon gain during the rainy season, when the newly leafed out trees provide shade to the lower canopy. Atmospheric species had photosynthetic activity for longer into the dry period, possibly supported by dew and fog events. Leaf angles, orientation, trichome, and stomata densities are discussed in relation to water and light use among the species with contrasting ecological strategies.  相似文献   

10.
The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more), which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait). In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits) but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments) also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges).  相似文献   

11.
Environmental characteristics have a major effect on the species composition of seasonally dry tropical forest. However, this effect has been little considered when describing secondary succession of this ecosystem. We tested the hypothesis that local environmental heterogeneity influences successional trajectories when high species richness is available. Changes in species composition and structure were described in 126 vegetation plots differing in successional stage and located along a topographical and soil nutrient gradient. Variation in community composition was partitioned between successional stage, environmental characteristics, and spatial structure using redundancy analyses. In addition, relationships between plot distance matrices for these factors were analysed by means of Mantel tests. High species turnover was observed during succession and species composition similarity was higher among late successional forest than among early and intermediate forests. A higher portion of variation in species composition was explained by environmental characteristics compared to successional stage, whereas the spatial structure of the data was weak. Our results suggest that in the region of study, variation in the successional trajectories is occurring owing to environmental heterogeneity, as well as to human disturbance and other unmeasured processes.  相似文献   

12.
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling.  相似文献   

13.
We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.  相似文献   

14.
Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil conditions affect forest structure and diversity within each of the two forest types. After correcting for spatial effects, soil‐vegetation relationships differed between the dry and the moist forest, being strongest in the dry forest. Furthermore, we hypothesized that soil nutrients would play a more important role in the moist forest than in the dry forest because vegetation in the moist forest is less constrained by water availability and thus can show its full potential response to soil fertility. However, contrary to our expectations, we found that soil fertility explained a larger number of forest variables in the dry forest (50 percent) than in the moist forest (17 percent). Shannon diversity declined with soil fertility at both sites, probably because the most dominant, shade‐tolerant species strongly increased in abundance as soil fertility increased.  相似文献   

15.
Storage and Flux of Nutrients in a Dry Tropical Forest in India   总被引:1,自引:0,他引:1  
SINGH  LALJI; SINGH  J S. 《Annals of botany》1991,68(3):275-284
Storage and flux of N, P, Ca, K and Na were studied in a drytropical forest The nutrient concentrations in different growthforms were in the order herb > shrub > tree, whereas thestanding state of nutrients followed the order tree > shrub> herb The total storage (kg ha–1) in vegetation amountedto 567 N, 37 P, 278 Ca, 256 K and 46 Na The share of above-groundparts in vegetation storage was 82 % for N, 83 % for P, 76 %for Ca, 85 % for K and 79 % for Na From 56 to 71 % of foliarN, P and K was withdrawn during senescence Nutrient input (kgha–1 year–1) from the vegetation (above-ground +below-ground) to forest floor amounted to 115 N, 8 P, 62 Ca,38 K and 10 Na compared to total net annual uptake (kg ha–1)of 143 N, 10 P, 78 Ca, 52 K and 12 Na, indicating marginal accumulationin the system Fine roots were as important a pathway of nutrientreturn as leaf litter Turnover rate and turnover time for differentnutrients on the forest floor ranged, respectively, between72 and 83 % and 12 and 1 39 years Dry tropical forest, nutnent concentration, standing state, uptake, internal cycling, turnover  相似文献   

16.
The diversity of tropical dry forests is poorly described and their regeneration ecology not well understood, however they are under severe threat of conversion and degradation. The Hellshire Hills constitute a dry limestone forest reserve on the south coast of Jamaica that is of high conservation value. In order to describe the structure and composition of this forest and assess the extent to which the population structures of its tree species do characterize their regeneration ecologies, pre-disturbance structure, floristics and seedling populations were compared with post-disturbance species responses in twelve 15 m × 15 m permanent sample plots which were laid out in a blocked design in April 1998, giving a total sample area of 0.27 ha. These plots were subjected to disturbance in April 1999 (cutting) with each of four blocks being assigned with two randomly allocated treatment plots (partially and clear cut) and one control plot (uncut). A total of 1278 trees (≥2 cm DBH) and 7863 seedlings and saplings (0–2 mm and 2–20 mm root collar diameter (RCD) respectively), comprising 60 and 52 species, respectively, were sampled in the plots prior to disturbance. The species-area curve for trees reached a maximum at 0.20 ha, and abundance was widely distributed amongst the species (26 had importance values greater than 1%); four species were notably codominant (with importance values between 7 and 8%). The forest stand structure had a reverse J-shaped curve for tree and for seedling/sapling size-class distributions, which indicated that the forest as a whole was probably regenerating adequately. From an analysis based on adult and sapling size-class distributions (SCDs), 21 species with 15 or more individuals were classified into 3 groups. Many of the species (15 of the 21), had flat adult SCDs that deviate from the whole-community reverse J-shaped SCD. However, sapling SCDs for 6 of the 15 species were strongly positive indicating the potential for their populations to be sustained by recruitment from the saplings present. No general association was found between these SCD species groupings and the actual ability of the species to recover from disturbance. Analysis of post-disturbance response revealed that for only 9 of the 21 species did adult SCDs provide adequate prediction, but for an additional 6 of the species information on sapling SCDs improved the accuracy of prediction if the ‘release’ of saplings or smaller individuals predominated recovery. However in this forest, recovery following disturbance which left stem and roots in place is predominantly by coppice regrowth, and there were no significant correlations found between adult SCDs and the species’ ability to coppice.  相似文献   

17.
Understanding phenology in plant populations requires distinction between proximate mechanisms and ultimate (evolutionary) causation. Leaf production and abscission, flower production, and herbivory were monitored for 2 yr in a population of the stem succulent tree, Plumeria alba L. in the Guánica State Forest in southwest Puerto Rico. Dependence of phenological events on abiotic (rainfall and day length) and biotic factors (herbivore abundance/damage) was quantified to discern potential relationships. Leaf flush and flowering were not associated with periods of highest rainfall as might be expected in a dry tropical forest. Rather, these events were highly correlated with day length. We observed that most leaf flush began in March and April, which was several months before the wettest period of the year (August to November). This result is consistent with other studies that show that leaf flush in Plumeria is under photoperiodic control and that the plants initiate growth and reproduction when cloudiness is low and seasonal light availability is greatest. Herbivore damage by caterpillars of the sphinx moth Pseudosphinx tetrio is restricted primarily to the wettest season, consistent with the hypothesis that early leaf flush and reproduction has been selected to avoid herbivory. It is not clear whether photoperiodic control of leaf flush and reproduction serves to maximize seasonal light availability, minimize the impact of herbivores, or both. However, it is clear that peak rainfall is not likely to have been the sole selective factor determining leaf flush and flowering in P. alba .  相似文献   

18.
We tested the hypothesis that, where fire has historically been infrequent, wooded areas that have been invaded by grasses and converted to grassland by fire are predisposed to future fire compared to adjacent areas that remain wooded; thus, an initial forest fire may promote future fires. We compared microclimate between a grass-dominated burned area and a nearby grass-invaded woodland that has not burned in recent history, both located in the submontane dry forest of Hawaii Volcanoes National Park. The results were used to parameterize BEHAVE, a fire behavior prediction model developed by the USDA Forest Service. The model's predictions include probability of ignition, intensity, rate of spread, and tree mortality. Contrary to expectations, daytime hourly mean temperatures were higher and relative humidity was lower in the woodland site. However, the differences in temperature and humidity were not great enough to affect spread rate or probability of ignition. Wind speeds were substantially greater in the grassland, and this was most important in driving differences in modeled fire spread. Given similar synoptic conditions, a fire started in the grassland can be expected to spread an order of magnitude faster than one started in the woodland.  相似文献   

19.
The highest concentration of oak species in the world occurs in Mexico, but human activities have strongly degraded these oak forests. Mexican oaks have high economic, social, and cultural value, and restoring these forests is of paramount importance for the people of Mexico. Here, we propose a method for restoring oak forests using native shrubs that colonize degraded areas as nurse plants for oak seedlings. To test the viability of this proposal, seedling transplant experiments were performed in a degraded area near a protected oak forest relict. Two pioneer shrubs were identified as potential nurse species: Mimosa luisana and Senecio sp. The target oak species was Quercus castanea . Oak seedlings were located beneath the canopies of both shrubs and in the surrounding area without shrub cover. Water is a limiting resource for oak establishment in seasonally dry environments; therefore, we included irrigation systems in our experimental design to determine whether the combination of nurse plants plus watering led to higher rate of survival than the presence of nurse species alone. Seedling survival without watering was less than 20% both beneath nurse species and in the surrounding habitat. When water was supplied, survival rate beneath nurse species increased up to 58% while survival in the surrounding habitat did not differ from that observed in treatments without watering. Our results indicate that survival rate of oak seedlings is increased by the presence of nurse plants only when water is supplied. This suggests that restoration of oak forests in these degraded areas requires both nurse plants and watering.  相似文献   

20.
To understand the mechanisms driving species diversity is central to community ecology. Here, we explored if habitat partitioning is associated with a species‐rich ectoparasite community in small rodents from a tropical dry forest in western Mexico. We trapped 199 mice in three 0.5 ha‐plots from eight small rodent species for every two months, from July 2011 to April 2012, and collected their ectoparasites. We identified 17 species of mites, two sucking lice species, two phoretic species, and one commensal species. The most abundant ectoparasite species was Steptolaelaps liomydis, representing 42 percent of all ectoparasites collected; seven ectoparasite species had < 10 individuals. Eighteen ectoparasite species (of 22 species) were collected from the most abundant rodent Liomys pictus. C‐score and the number of checkerboard species pairs were significantly higher against a random expectation. Ectoparasite species in L. pictus mice showed host microhabitat partitioning; Fahrenholzia ehrlichi and Fahrenholzia texana were found only in the anterior dorsal area, Ornithonysus sp. occurred along the dorsal part, Ixodes species were restricted to the ears, and Steptolaelaps liomydis was found throughout the body. We also identified ectoparasite communities with distinct species composition in two rodent species that use contrasting macrohabitats (L. pictus, strictly terrestrial; Peromyscus perfulvus, mostly arboreal). The remaining and low abundant rodent species showed a species‐poor ectoparasite community composition. We conclude that habitat partitioning at both macro and microhabitat scales appeared to characterize the species‐rich ectoparasite community. Conversely, most rodent host species with low abundances showed a species‐poor ectoparasite community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号