首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysozyme folds through two competing pathways. A fast pathway leads directly from a collapsed state to the native protein, whereas folding on a slow pathway proceeds through a partially folded intermediate (I(1)). At NaCl concentrations above 100 mM, a second transient intermediate (I(2)) is induced as judged by the appearance of an additional apparent rate constant in the refolding kinetics. Monitoring the time course of native molecules and of both intermediates shows that the NaCl-induced state (I(2)) is located on neither of the two folding pathways observed at low-salt concentrations. These results suggest that I(2) is a metastable high-energy intermediate at low-ionic strength and is located on a third folding pathway. The folding landscape of lysozyme seems to be complex with several high-energy intermediates located on parallel folding routes. However, the experiments show no evidence for partially folded states on the fast direct pathway.  相似文献   

2.
T4 lysozyme has two easily distinguishable but energetically coupled domains: the N and C-terminal domains. In earlier studies, an amide hydrogen/deuterium exchange pulse-labeling experiment detected a stable submillisecond intermediate that accumulates before the rate-limiting transition state. It involves the formation of structures in both the N and C-terminal regions. However, a native-state hydrogen exchange experiment subsequently detected an equilibrium intermediate that only involves the formation of the C-terminal domain. Here, using stopped-flow circular dichroism and fluorescence, amide hydrogen exchange-folding competition, and protein engineering methods, we re-examined the folding pathway of T4-lysozyme. We found no evidence for the existence of a stable folding intermediate before the rate-limiting transition state at neutral pH. In addition, using native-state hydrogen exchange-directed protein engineering, we created a mimic of the equilibrium intermediate. We found that the intermediate mimic folds with the same rate as the wild-type protein, suggesting that the equilibrium intermediate is an on-pathway intermediate that exists after the rate-limiting transition state.  相似文献   

3.
Folding intermediates have been detected and characterized for many proteins. However, their structures at atomic resolution have only been determined for two small single domain proteins: Rd-apocytochrome b(562) and engrailed homeo domain. T4 lysozyme has two easily distinguishable but energetically coupled domains: the N and C-terminal domains. An early native-state hydrogen exchange experiment identified an intermediate with the C-terminal domain folded and the N-terminal domain unfolded. We have used a native-state hydrogen exchange-directed protein engineering approach to populate this intermediate and demonstrated that it is on the folding pathway and exists after the rate-limiting step. Here, we determined its high-resolution structure and the backbone dynamics by multi-dimensional NMR methods. We also characterized the folding behavior of the intermediate using stopped-flow fluorescence, protein engineering, and native-state hydrogen exchange. Unlike the folding intermediates of the two single-domain proteins, which have many non-native side-chain interactions, the structure of the hidden folding intermediate of T4 lysozyme is largely native-like. It folds like many small single domain proteins. These results have implications for understanding the folding mechanism and evolution of multi-domain proteins.  相似文献   

4.
We have used small angle X-ray scattering (SAXS) to monitor changes in the overall size and shape of the Tetrahymena ribozyme as it folds. The native ribozyme, formed in the presence of Mg2+, is much more compact and globular than the ensemble of unfolded conformations. Time-resolved measurements show that most of the compaction occurs at least 20-fold faster than the overall folding to the native state, suggesting that a compact intermediate or family of intermediates is formed early and then rearranges in the slow steps that limit the overall folding rate. These results lead to a kinetic folding model in which an initial 'electrostatic collapse' of the RNA is followed by slower rearrangements of elements that are initially mispositioned.  相似文献   

5.
By means of a kinetic test, it was demonstrated that one of the folding intermediates (Ialpha) of hen lysozyme with alpha-domain folded and beta-domain unfolded is on the folding pathway under the classical definition. Ialpha folds to the native (N) state directly (unfolded (U) <==> Ialpha <==> N) without having to unfold to U and then refold to N through alternative folding pathways as in Ialpha <==> U <==> N.  相似文献   

6.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways.  相似文献   

7.
Reduced denatured lysozyme has been oxidised and refolded at pH values close to neutral in an efficient way by dilution from buffers containing 8.0 M urea, and refolding intermediates were separated by reverse-phase HPLC at pH 2. By using peptic digestion in combination with high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem MS/MS the dominant intermediate was identified to be des-[76-94]. This species has three of the four native disulphide bonds, but lacks the Cys76-Cys94 disulphide bond which connects the two folding domains in the native protein. Characterisation of des-[76-94] by 2D1H NMR shows that it has a highly native-like structure. This provides an explanation for the accumulation of this species during refolding as direct oxidation to the fully native protein will be restricted by the burial of Cys94 in the protein interior.  相似文献   

8.
Though the molecular architecture of many native RNA structures has been characterized, the structures of folding intermediates are poorly defined. Here, we present a nucleotide-level model of a highly structured equilibrium folding intermediate of the specificity domain of the Bacillus subtilis RNase P RNA, obtained using chemical and nuclease mapping, circular dichroism spectroscopy, small-angle X-ray scattering and molecular modeling. The crystal structure indicates that the 154 nucleotide specificity domain is composed of several secondary and tertiary structural modules. The structure of the intermediate contains modules composed of secondary structures and short-range tertiary interactions, implying a sequential order of tertiary structure formation during folding. The intermediate lacks the native core and several long-range interactions among peripheral regions, such as a GAAA tetraloop and its receptor. Folding to the native structure requires the local rearrangement of a T-loop in the core in concert with the formation of the GAAA tetraloop-receptor interaction. The interplay of core and peripheral structure formation rationalizes the high degree of cooperativity observed in the folding transition leading to the native structure.  相似文献   

9.
M Ikeguchi  K Kuwajima  M Mitani  S Sugai 《Biochemistry》1986,25(22):6965-6972
The refolding kinetics of alpha-lactalbumin at different concentrations of guanidine hydrochloride have been investigated by means of kinetic circular dichroism and stopped-flow absorption measurements. The refolding reaction consists of at least two stages, the instantaneous accumulation of the transient intermediate that has peptide secondary structure and the subsequent slow process associated with formation of tertiary structure. The transient intermediate is compared with the well-characterized equilibrium intermediate observed during the denaturant-induced unfolding. Stabilities of the secondary structures against the denaturant, affinities for Ca2+, and tryptophan absorption properties of the transient and equilibrium intermediates were investigated. In all of these respects, the transient intermediate is identical with the equilibrium one, demonstrating the validity of the use of the equilibrium intermediate as a model of the folding intermediate. Essentially the same transient intermediate was also detected in the folding of lysozyme, the protein known to be homologous to alpha-lactalbumin but whose equilibrium unfolding is represented as a two-state reaction. The stability and cooperativity of the secondary structure of the intermediate of lysozyme are compared with those of alpha-lactalbumin. The results show that the protein folding occurring via the intermediate is not limited to the proteins that show equilibrium intermediates. Although the unfolding equilibria of most proteins are well approximated as a two-state reaction, the two-state hypothesis may not be applicable to the folding reaction under the native condition. Two models of protein folding, intermediate-controlled folding model and multiple-pathway folding model, which are different in view of the role of the intermediate in determining the pathway of folding, are also discussed.  相似文献   

10.
HlyA from Escherichia coli is a member of the repeats in toxin (RTX) protein family, produced by a wide range of Gram-negative bacteria and secreted by a dedicated Type 1 Secretion System (T1SS). RTX proteins are thought to be secreted in an unfolded conformation and to fold upon secretion by Ca2 + binding. However, the exact mechanism of secretion, ion binding and folding to the correct native state remains largely unknown. In this study we provide an easy protocol for high-level pro-HlyA purification from E. coli. Equilibrium folding studies, using intrinsic tryptophan fluorescence, revealed the well-known fact that Ca2 + is essential for stability as well as correct folding of the whole protein. In the absence of Ca2 +, pro-HlyA adopts a non-native conformation. Such molecules could however be rescued by Ca2 + addition, indicating that these are not dead-end species and that Ca2 + drives pro-HlyA folding. More importantly, pro-HlyA unfolded via a two-state mechanism, whereas folding was a three-state process. The latter is indicative of the presence of a stable folding intermediate. Analysis of deletion and Trp mutants revealed that the first folding transition, at 6–7 M urea, relates to Ca2 + dependent structural changes at the extreme C-terminus of pro-HlyA, sensed exclusively by Trp914. Since all Trp residues of HlyA are located outside the RTX domain, our results demonstrate that Ca2 + induced folding is not restricted to the RTX domain. Taken together, Ca2 + binding to the pro-HlyA RTX domain is required to drive the folding of the entire protein to its native conformation.  相似文献   

11.
A variety of techniques, including quenched-flow hydrogen exchange labelling monitored by electrospray ionization mass spectrometry, and stopped-flow absorbance, fluorescence and circular dichroism spectroscopy, has been used to investigate the refolding kinetics of hen lysozyme over a temperature range from 2 degrees C to 50 degrees C. Simple Arrhenius behaviour is not observed, and although the overall rate of folding increases from 2 to 40 degrees C, it decreases above 40 degrees C. In addition, the transient intermediate on the major folding pathway at 20 degrees C, in which the alpha-domain is persistently structured in the absence of a stable beta-domain, is thermally unfolded in a sigmoidal transition (T(m) approximately 40 degrees C) indicative of a cooperatively folded state. At all temperatures, however, there is evidence for fast ( approximately 25 %) and slow ( approximately 75 %) populations of refolding molecules. By using transition state theory, the kinetic data from various experiments were jointly fitted to a sequential three-state model for the slow folding pathway. Together with previous findings, these results indicate that the alpha-domain intermediate is a productive species on the folding route between the denatured and native states, and which accumulates as a consequence of its intrinsic stability. Our analysis suggests that the temperature dependence of the rate constant for lysozyme folding depends on both the total change in the heat capacity between the ground and transition states (the dominant factor at low temperatures) and the heat-induced destabilization of the alpha-domain intermediate (the dominant factor at high temperatures). Destabilization of such kinetically competent intermediate species is likely to be a determining factor in the non-Arrhenius temperature dependence of the folding rate of those proteins for which one or more intermediates are populated.  相似文献   

12.
3H-diazirine (3H-DZN), a photoreactive gas similar in size to water, was used to probe the topography of the surface and inner space of proteins. On photolysis 3H-DZN generates 3H-methylene carbene, which reacts unselectively with its molecular cage, inserting even into C-H bonds. Labeling of bovine alpha-lactalbumin (alpha-LA, MW: 14,200) with 1 mM (3)H-DZN yielded 0.0041 mol CH2/mol of protein, in agreement with the expectation for an unspecific surface-labeling phenomenon. The cooperative urea-induced unfolding of alpha-LA, as monitored by the extent of 3H-methylene labeling, agrees with that measured by circular dichroism spectroscopy in the far and near ultraviolet regions. At 8 M urea, the unfolded state U was labeled 25-30% more than the native state N primarily because of the increase in the accessible surface area (ASA) of the protein occurring upon unfolding. However, this result lies below the approximately 100% increment expected from theoretical estimates of ASA of state U. Among other factors, most likely the existence of a residual structure in U, that involves helices H2 and H4 of the alpha subdomain, might account for this fact, as shown by a comparative analysis of peptide labeling patterns of N and U samples. In this paper, we demonstrate the usefulness of the 3H-methylene labeling method to monitor conformational transitions and map solvent accessibility along the polypeptide sequence, thus opening the possibility of outlining structural features of nonnative states (i.e., denatured states, molten globule). We anticipate that this technique also would help to identify ligand binding and oligomerization sites in proteins.  相似文献   

13.
The forces directing the “β-fold” at residues 52–59 in hen egg-white lysozyme have been explored by theoretical conformational analysis, which includes solvent interaction. It is shown that, whereas the conformation is in its most favorable free-energy state for a folded form, the fold is actually a destabilizing influence which is overcome only by long range interactions. The concept is introduced that nucleation of the tertiary structure initiates the folding process which is localized by the specific sequence. Thus, long range forces “drive” the fold and short range forces “localize” it.  相似文献   

14.
2SS[6‐127,64‐80] variant of lysozyme which has two disulfide bridges, Cys6‐Cys127 and Cys64‐Cys80, and lacks the other two disulfide bridges, Cys30‐Cys115 and Cys76‐Cys94, was quite unstructured in water, but a part of the polypeptide chain was gradually frozen into a native‐like conformation with increasing glycerol concentration. It was monitored from the protection factors of amide hydrogens against H/D exchange. In solution containing various concentrations of glycerol, H/D exchange reactions were carried out at pH* 3.0 and 4°C. Then, 1H‐15N‐HSQC spectra of partially deuterated protein were measured in a quenching buffer for H/D exchange (95% DMSO/5% D2O mixture at pH* 5.5 adjusted with dichloroacetate). In a solution of 10% glycerol, the protection factors were nearly equal to 10 at most of residues. With increasing glycerol concentration, some selected regions were further protected, and their protection factors reached about a 1000 in 30% glycerol solution. The highly protected residues were included in A‐, B‐, and C‐helices and β3‐strand, and especially centered on Ile 55 and Leu 56. In 2SS[6‐127,64‐80], long‐range interactions were recovered due to the preferential hydration by glycerol in the hydrophobic box of the α‐domain. Glycerol‐induced recovering of the native‐like structure is discussed from the viewpoint of molten globules growing with the protein folding. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 665–675, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
When amino acid residues are represented by parameters describing their side chain lengths and polarities, a sequence function defined as the sum of the first two sequence autocorrelation functions is found to be negatively and linearly correlated with the logarithms of folding rates of beta-proteins. The new function reveals new features in beta-protein folding: larger residues slow down the folding while alternative distribution of polar-non-polar residues accelerates the folding.  相似文献   

16.
Small proteins often fold in an apparent two-state manner with the absence of detectable early-folding intermediates. Recently, using native-state hydrogen exchange, intermediates that exist after the rate-limiting transition state have been identified for several proteins. However, little is known about the folding kinetics from these post-transition intermediates to their corresponding native states. Herein, we have used protein engineering and a laser-induced temperature-jump (T-jump) technique to investigate this issue and have applied it to Rd-apocyt b(562) , a four-helix bundle protein. Previously, it has been shown that Rd-apocyt b(562) folds via an on-pathway hidden intermediate, which has only the N-terminal helix unfolded. In the present study, a double mutation (V16G/I17A) in the N-terminal helix of Rd-apocyt b(562) was made to further increase the relative population of this intermediate state at high temperature by selectively destabilizing the native state. In the circular dichroism thermal melting experiment, this mutant showed apparent two-state folding behavior. However, in the T-jump experiment, two kinetic phases were observed. Therefore, these results are in agreement with the idea that a folding intermediate is populated on the folding pathway of Rd-apocyt b(562) . Moreover, it was found that the exponential growth rate of the native state from this intermediate state is roughly (25 microsec)(-1) at 65 degrees C.  相似文献   

17.
18.
  1. Download : Download high-res image (55KB)
  2. Download : Download full-size image
  相似文献   

19.
Protein folding in cells reflects a delicate interplay between biophysical properties of the nascent polypeptide, the vectorial nature and rate of translation, molecular crowding, and cellular biosynthetic machinery. To better understand how this complex environment affects de novo folding pathways as they occur in the cell, we expressed β-barrel fluorescent proteins derived from GFP and RFP in an in vitro system that allows direct analysis of cotranslational folding intermediates. Quantitative analysis of ribosome-bound eCFP and mCherry fusion proteins revealed that productive folding exhibits a sharp threshold as the length of polypeptide from the C terminus to the ribosome peptidyltransferase center is increased. Fluorescence spectroscopy, urea denaturation, and limited protease digestion confirmed that sequestration of only 10-15 C-terminal residues within the ribosome exit tunnel effectively prevents stable barrel formation, whereas folding occurs unimpeded when the C terminus is extended beyond the ribosome exit site. Nascent FPs with 10 of the 11 β-strands outside the ribosome exit tunnel acquire a non-native conformation that is remarkably stable in diverse environments. Upon ribosome release, these structural intermediates fold efficiently with kinetics that are unaffected by the cytosolic crowding or cellular chaperones. Our results indicate that during synthesis, fluorescent protein folding is initiated cotranslationally via rapid formation of a highly stable, on-pathway structural intermediate and that the rate-limiting step of folding involves autonomous incorporation of the 11th β-strand into the mature barrel structure.  相似文献   

20.
The type II chaperonin CCT (chaperonin containing Tcp-1) of eukaryotic cytosol is a heteromeric 16-mer particle composed of eight different subunits. Three-dimensional reconstructions of apo-CCT and ATP-CCT have been obtained at 28 A resolution by cryo-electron microscopy. Binding of ATP generates an asymmetric particle; one ring has a slightly different conformation from the apo-CCT ring, while the other has undergone substantial movements in the apical domains. Upon ATP binding the apical domains rotate and point towards the cylinder axis, so that the helical protrusions present at their tips could act as a lid closing the ring cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号