首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The emulsion-stabilizing properties of a chitosan preparation were compared as a function of the whey protein isolate/chitosan mixture ratio (WPI/CNI) and the ionic strength (μ), at pH 5.5 and 6.0. At both pH conditions, general decreases in emulsion stability towards charge neutralization flocculation and syneresis were observed at WPI/CNI > 5. This was particularly evident at pH 6.0, due to a lower surface net charge (lower electrostatic stabilization). In counterpart, when μ was increased, the higher load of chitosan at pH 6.0 produced higher stabilities (higher steric stabilization), in spite of comparable decreases of surface net charge at both pH conditions. The transition from soluble to insoluble protein–chitosan complex formation in mixtures at pH 6.0 and WPI/CNI > 5.0 was due to an emulsion destabilization towards syneresis, whereas soluble complex formation at pH 5.5 also produced syneresis. It showed that soluble protein–chitosan adsorbing complex formation prior homogenization is not essentially linked to emulsion stabilization.  相似文献   

2.
The effects of lecithin addition in oil or water phase on the stability of oil-in-water emulsions made with 0.1 wt% whey protein and 10 wt% n-tetradecane at neutral and acidic pH were studied by monitoring the gravitational creaming and phase separation. The effects of lecithin addition on the interfacial behavior of β-lactoglobulin were also studied to compare with the results of emulsion stability. At neutral pH, crude phosphatidylcholine (PC) from egg yolk or soybean increased the stability of the emulsion made with protein and lowered the interfacial tension of protein films more effectively than pure egg PC. A more remarkable effect on both the emulsion stability and the interfacial tension was found when crude PC was added in the oil phase rather than in the water phase. The purity of lecithins and the way to add them are suggested to be very important to make a stable emulsion with protein. On acidic pH (4.5 or 3.0), the increased creaming or phase separation in a whey protein-stabilized emulsion, but the lowered interfacial tension of β-lactoglobulin films, were found upon the addition of pure or crude PC in oil or water phase. These results suggest that in acidic pH, densely packed films may be formed on a planar oil–water interface, but not on adsorbed layers around oil droplets in an emulsion.  相似文献   

3.
High‐performance rechargeable all‐solid‐state lithium metal batteries with high energy density and enhanced safety are attractive for applications like portable electronic devices and electric vehicles. Among the various solid electrolytes, argyrodite Li6PS5Cl with high ionic conductivity and easy processability is of great interest. However, the low interface compatibility between sulfide solid electrolytes and high capacity cathodes like nickel‐rich layered oxides requires many thorny issues to be resolved, such as the space charge layer (SCL) and interfacial reactions. In this work, in situ electrochemical impedance spectroscopy and in situ Raman spectroscopy measurements are performed to monitor the detailed interface evolutions in a LiNi0.8Co0.1Mn0.1O2 (NCM)/Li6PS5Cl/Li cell. Combining with ex situ characterizations including scanning electron microscopy and X‐ray photoelectron spectroscopy, the evolution of the SCL and the chemical bond vibration at NCM/Li6PS5Cl interface during the early cycles is elaborated. It is found that the Li+ ion migration, which varies with the potential change, is a very significant cause of these interface behaviors. For the long‐term cycling, the SCL, interfacial reactions, lithium dendrites, and chemo‐mechanical failure have an integrated effect on interfaces, further deteriorating the interfacial structure and electrochemical performance. This research provides a new insight on intra and intercycle interfacial evolution of solid‐state batteries.  相似文献   

4.
The purpose of this work was to validate experimentally that multiple steady states may be achieved in a continuous stirred tank reactor (CSTR) during hydrolysis of sucrose by invertase. Experiments were done with four initial sucrose concentrations (0.1, 0.175, 0.584 and 1 M) to study their effect on residual sucrose and reaction rate at steady state. Two different steady states (S=0.7 M, r=9×10−4 mol/l min and S=0.135 M, r=1.54×10−3 mol/l min) were found depending on initial concentration of sucrose in the reactor. Two stable steady states were possible in a CSTR using invertase for the hydrolysis of sucrose. A third possible steady state can be derived theoretically, but it should be a metastable condition because any small disturbance in the system will result in transitory states stabilizing at sugar concentrations of either 0.135 or 0.7 M.  相似文献   

5.
Changes in the surface potential, the electrical potential difference between the membrane surface and the bulk aqueous phase were measured with the carotenoid spectral shift which indicates the change of electrical field in the membrane. Chromatophores were prepared from a non-sulfur purple bacterium, Rhodopseudomonas sphaeroides, in a low-salt buffer. Surface potential was changed by addition of salt or by pH jump as predicted by the Gouy-Chapman diffuse double layer theory.When a salt was added at neutral pH, the shift of carotenoid spectrum to shorter wavelength, corresponding to an increase in electrical potential at the outside surface, was observed. The salts of divalent cations (MgSO4, MgCl2, CaCl2) were effective at concentrations lower than those of monovalent cation salts (NaCl, KCl, Na2SO4) by a factor of about 50. Among the salts of monoor divalent cation used, little ionic species-dependent difference was observed in the low-concentration range except that due to the valence of cations. The pH dependence of the salt-induced carotenoid change was explained in terms of the change in surface charge density, which was about 0 at pH 5–5.5 and had negative values at higher pH values. The dependence of the pH jump-induced absorbance change on the salt concentration was also consistent with the change in the charge density. The surface potential change by the salt addition, which was calibrated by H+ diffusion potential, was about 90 mV at the maximum. From the difference between the effective concentrations with salts of mono- and divalent cations at pH 7.8, the surface charge density of (?1.9 ± 0.5) · 10?3 elementary charge per Å2, and the surface potential of about ?100 mV in the presence of about 0.1 mM divalent cation or 5 mM monovalent cation were calculated.  相似文献   

6.
The topology of the contact seam of human erythrocytes adhered by dextran, an uncharged polymer, has been examined. Particular attention has been paid to the influence of electrostatic intermembrane interactions since their magnitude and range can be accurately estimated. Normal cells formed a continuous seam, whereas erythrocytes with pronase-modified glycocalices formed localized contact points on adhesion in 72 kDa dextran in buffered 145 mM NaCl. The dependence of the inter-contact distance lambda on dextran concentration [D] over the range 2-6% w/v, was given by lambda = C[D]-0.62, where C was a constant. The index of [D] was independent of dextran molecular mass over the range 20 to 450 kDa. The inter-contact distance for pronase-pretreated cells in 6% w/v 72 kDa dextran increased from 0.78 to 1.4 microns as [NaCl] was reduced through the range 145 to 90 mM and the suspending phase was maintained at isotonicity by using sorbitol to replace NaCl. The formation and lateral separation of the contact points are discussed from the perspective of linear interfacial instability theory. The theory allows a quantitative explanation for the experimentally observed dependence of inter-contact distance and of disturbance growth rate on change in electrostatic interaction. The results suggest that the dominant wavelength, determining the inter-contact distance, is established on approaching membranes when the layers of cell surface charge are separated by a perpendicular distance of < 14 nm (bilayer separation of 24 nm).  相似文献   

7.
目的:利用溶瘤腺病毒CNHK500体外转染内皮祖细胞,评估其在体外对肺腺癌细胞的特异性杀伤作用。方法:通过溶瘤腺病毒CNHK500转染内皮祖细胞,构建携带CNHK500的内皮祖细胞,并将内皮祖细胞和CNHK500分为三组,即CNHK500组,转染CNHK500的内皮祖细胞组和内皮祖细胞组,分别感染肺腺腺癌细胞A549,用MTT法检测不同肺腺癌细胞A549的生长抑制情况。结果:成功的分离并培养、鉴定内皮祖细胞,并完成CNHK500对内皮祖细胞的转染,CNHK500滴度为2.0×107 pfu/m L,其中CNHK500组肺腺癌细胞A549的存活率为(75.54±5.46)%,转染CNHK500的EPCs组肺腺癌细胞A549的存活率为(80.81±3.69)%,EPCs组肺腺癌细胞A549的存活率为(98.13±2.98)%。结论:本实验首次成功的将CNHK500转染内皮祖细胞,并应用于肺腺癌细胞的生长抑制中,这将有助于为肺腺癌的生物治疗提供一个崭新的策略。  相似文献   

8.
Emulsifying properties of bovine serum albumin (BSA) were compared between intact BSA (molecular mass of 66 kDa) and the domain I-truncated fragment (molecular mass of 45 kDa). The particle size considerably decreased with increasing both intact BSA and the fragment concentration. The intact BSA formed a more homogeneous emulsion and smaller particle distributions than the fragment at all protein concentrations. The relative amount of protein adsorbed at an oil-water interface was much less for intact BSA than for the fragment, and the surface concentration of intact BSA per unit surface area was also much less than that of the fragment, indicating that less protein is required to form a stable film for intact BSA than for the fragment. The particle size distribution in the fragment-stabilized emulsion became more homogeneous during storage time, while that in intact BSA-stabilized BSA had no significant change. These results strongly suggested that the domain I-truncated fragment with a higher hydrophobic value is more favorable toward the oil phase, while the highly charged domain I segment inhibits the droplet association, and consequently is important in stabilizing droplets dispersed in the emulsion.  相似文献   

9.
An important aspect of the interaction of a biological system with an externally produced electric field is that of charge separation and interfacial charging. This aspect has been ignored in some recent experimental and theoretical work. In the case of small regions of lower electrical resistivity imbedded in a higher resistivity medium, charge separation across the lower resistivity regions will result in charging of the interfaces between the lower and higher resistivity regions. The field produced by this charge separation will significantly affect the shape and the magnitude of the net electric field pulse within the lower resistivity regions. In particular, the field experienced by bone cells will be quite different from the externally produced field. The shape as well as the magnitude of the net electric field experienced by the cells depends on the time rate of change of the rising and falling phases of the externally produced electric field pulse.  相似文献   

10.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (NA+, K+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1. 10(2) M-1 while ATP binds with an apparent Ka = 1.1.10(4) M-1 for 1 mM NaCl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCl2, 0.1 mM Tris-HCl (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasielastic light scattering spectrum is 203.7 +/- 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

11.
Green plants use solar energy efficiently in nature. Simulating the exquisite structure of a natural photosynthesis system may open a new approach for the construction of desirable photocatalysts with high light harvesting efficiency and performance. Herein, inspired by the excellent light utilization of “leaf mosaic” in plants, a novel vine‐like g‐C3N4 (V‐CN) is synthesized for the first time by copolymerizing urea with dicyandiamide‐formaldehyde (DF) resin. The as‐prepared V‐CN exhibits ultrahigh photocatalytic hydrogen production of 13.6 mmol g?1 h?1 under visible light and an apparent quantum yield of 12.7% at 420 nm, which is ≈38 times higher than that of traditional g‐C3N4, representing one of the highest‐activity g‐C3N4‐based photocatalysts. This super photocatalytic performance is derived from the unique leaf mosaic structure of V‐CN, which effectively improves its light utilization and affords a larger specific surface area. In addition, the introduction of DF resin further optimizes the energy band of V‐CN, extends its light absorption, and improves its crystallinity and interfacial charge transport, resulting in high performance. It is an easy and green strategy for the preparation of broad‐spectrum, high‐performance g‐C3N4, which presents significant advancement for the design of other nanophotocatalysts by simulating the fine structure of natural photosynthesis.  相似文献   

12.
Enantioselective epoxide hydrolases are useful biocatalysts for the preparation of enantiopure epoxides and diols. The kinetic resolution of racemic epoxides can be carried out in an organic/aqueous biphasic system to allow use of high epoxide concentrations. Enzyme inactivation in such a system, however, may occur by contact with the interface. In this study, we investigated the factors which influence the interfacial inactivation of Agrobacterium radiobacter epoxide hydrolase in an octane/water biphasic system. Rates of interfacial inactivation were measured both in a stirred-cell, which has a planar interface, and in an emulsion reactor. Interfacial inactivation rates measured in the stirred-cell at a fixed interfacial area increased with mixing intensity. Interfacial inactivation rates per unit area were lower in the emulsion reactor than in the stirred-cell and increased with bulk aqueous enzyme concentration. Circular dichroism measurements showed that during biphasic incubation all unadsorbed soluble enzyme existed in the native conformation. Activity assays showed that the dissolved enzyme was also fully active, indicating that inactivated enzyme precipitated from solution. Using an inactive epoxide hydrolase mutant structurally similar to the wild-type enzyme in order to avoid the conversion of the epoxide, it was found that high concentrations of epoxide in the organic phase increased the rate of interfacial inactivation.  相似文献   

13.
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (?=16nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.  相似文献   

14.
A charge-pulse technique was designed to measure charge movements in the Na-transport mode of the Na,K-ATPase in membrane fragments adsorbed to a planar lipid bilayer with high time resolution. 1) Na+ transport was measured as a function of membrane potential, and 2) voltage-dependent extracellular ion binding and release were analyzed as a function of Na+ concentration and membrane potential. The results could be fitted and explained on the basis of a Post-Albers cycle by simulations with a mathematical model. The minimal reaction sequence explaining the electrogenicity of the pump consists of the following steps: (Na3)E1-P <--> P-E2(Na3) <--> P-E2(Na2) <--> P-E2(Na) <--> P-E2. The conformational change, E1 to E2, is electrogenic (beta 0 < or = 0.1) and the rate-limiting step of forward Na+ transport with a rate constant of 25 s-1 (T = 20 degrees C). The first ion release step, P-E2(Na3) <--> P-E2(Na2), is the major charge translocating process (delta 0 = 0.65). It is probably accompanied by a protein relaxation in which the access structure between aqueous phase and binding site reduces the dielectric distance. The release of the subsequent Na+ ions has a significantly lower dielectric coefficient (delta1 = delta 2 = 0.2). Compared with other partial reactions, the ion release rates are fast (1400 s-1, 700 s-1, and 4000 s-1). On the basis of these findings, a refined electrostatic model of the transport cycle is proposed.  相似文献   

15.
We report that glycerol changes the separation characteristics of polyacrylamide nucleoprotein gels in which it is included as a stabilizing agent. Polyacrylamide gel electrophoresis fractionates DNA and nucleosomes according to net negative charge, mass and conformation. With glycerol included, fractionation seems to be largely based on particle mass and charge. The conformation factor in separation is progressively lost with increasing glycerol concentrations. Nucleosome positions on the same DNA fragment are no longer resolved, while the difference in electrophoretic mobility between core particles and nucleosomes carrying longer DNA becomes smaller and is eventually lost. The retardation of bent DNA is also much reduced. Using the differences in separation characteristics between glycerol-containing and regular nucleoprotein gels could be a new means to obtain information on macromolecules in solution.  相似文献   

16.
Boar seminal plasma proteins were separated by gel chromatography on Sephadex G-75 into five fractions (I–V). Serine proteinase inhibitors were found mainly in the protein fraction with relative molecular weight 5–25 kDa. Small amounts of these inhibitors were also found in the high molecular weight protein fraction (Mr>100 kDa). The protein fraction containing most of the proteinase inhibitory activity was further separated by RP HPLC. Isolated proteins were characterized by SDS electrophoresis and immunoblotting, N-terminal amino acid sequencing and by determination of the proteinase inhibitory activity. In the fraction containing proteinase inhibitors, also β-microseminoprotein (β-MSP), AQN 1 and lactoferrin were identified. The possible existence of complexes of protein components in the fraction with relative molecular weight 5–25 kDa was studied in detail using gel chromatographic separation on Sephadex G-50. A part of proteinase inhibitors with Mr 8 kDa was eluted together with AQN 1 spermadhesin. An interaction of isolated spermadhesin AQN 1 and proteinase inhibitor was shown.  相似文献   

17.
Synchronization methods are used to obtain higher fertility when artificial insemination (AI) is applied to lactating rabbit does. The most common methods are eCG administration or temporary doe-litter separation. Nevertheless, drawbacks have been reported, such as negative side effects of hormonal treatment in the doe and low litter growth due to absence of suckling, respectively. Recently, improved reproductive performance (without visible consequences on young rabbit growth), has been obtained by applying a 2-day controlled nursing method before AI, by allowing for a 10 min nursing of the litter 24 h of separation. The present study was undertaken to examine the pituitary (PRL, LH, FSH) and the ovarian response (follicle size and number) to those methods. A total of 442 lactating does inseminated on day 11 post-partum were distributed in three experimental groups: 2CN (closing of nest box on day 9, controlled nursing on days 10 and 11), eCG (20 IU administered on day 9 post-partum) and CONTROL (untreated). Blood samples were obtained from 10 does per group at 48, 24 and 0 h before AI, and 1h after AI. Both 2CN and eCG treatments similarly improved sexual receptivity (76.3, 77.5 and 58.2%, respectively; P<0.001) and fertility (63.1, 64.1 and 48.4%, respectively; P<0.05) in lactating does, compared to the CONTROL group. Similar plasma FSH levels in all groups of does and sampling times were observed. Due to the absence of suckling, plasma concentration of PRL on day 10 post-partum in the 2CN group was lower than in the CONTROL group (P<0.05); this endocrine change in PRL levels could explain the better reproductive performances obtained with 2CN treatment. At 1h after exogenous administration of GnRH (at the moment of AI) a high LH response was observed in all groups (P<0.001). Ovaries from 20 rabbits treated in the same way but uninseminated (2CN, n=10; eCG, n=5; CONTROL, n=5 does) were obtained on day 11 post-partum in order to check the morphometric status (weight, width and height) and to make histological and immunohistochemical studies to detect growth hormone receptor (GH-R). As a result, synchronization methods did not show any significant difference in relation to the CONTROL group. However, a small increase in the number of primary follicles was evidenced in the 2CN group with respect to the eCG group, similarly to the CONTROL group (23.0+/-3.7, 9.4+/-4.9 and 14.8+/-4.92 primary follicles, respectively; P=0.1). GH-R immunostaining-presence was more evident in the 2CN and the eCG groups, including primordial follicles and oocytes themselves. Thus, there could have been some direct effects of GH on follicular development, as described in other species. Some ovarian parameters described open new ways to study intra-ovarian mechanism of follicular development in the post-partum period of rabbit does.  相似文献   

18.
Release of free bases from calf thymus DNA upon irradiation in aerated 0.1 mol dm-3NaClO4 at pH 7 has been measured by HPLC and shown to be markedly influenced by the presence of thiols during irradiation. The ability of thiols to protect DNA was shown to depend upon the net charge (Z) at pH 7 in the order WR 1065 (Z = +2) greater than cysteamine (Z = +1) greater than 2-mercaptoethanol (Z = 0) approximately equal to dithiothreitol (Z = 0) greater than GSH (Z = -1) approximately equal to 2-mercaptoethanesulfonic acid (Z = -1) approximately equal to 2-mercaptosuccinate (Z = -2). A similar dependence of protection upon net charge was found for disulfides: cystamine (Z = +2) greater than 2-mercaptoethyl disulfide (Z = 0) greater than GSSG (Z = -2). Protection by WR 1065, but not by 2-mercaptoethanol or GSH, was found to decrease significantly with increasing ionic strength. Protection by WR 1065 and GSH was not markedly dependent upon pH between pH 6 and 8. The results are explained in terms of electrostatic interaction of the thiols with DNA, leading to high concentrations of cations near DNA, which allow them to scavenge hydroxyl radicals and repair DNA radicals effectively and to low concentrations of anionic thiols near DNA, which limit their effectiveness as protectors. Poly(dG,dC) and calf thymus DNA exhibited comparable release of G and C upon changing from 0.1 to 0.7 mol dm-3 MgSO4. Since this change causes poly(dG,dC), but not calf thymus DNA, to undergo a change from the B-form to the Z-form of DNA, both forms must have a comparable susceptibility to radiation-induced base release.  相似文献   

19.
C Ebel  P Faou  B Kernel  G Zaccai 《Biochemistry》1999,38(28):9039-9047
Halophilic malate dehydrogenase unfolds at low salt, and increasing the salt concentration stabilizes, first, the folded form and then, in some cases, destabilizes it. From inactivation and fluorescence measurements performed on the protein after its incubation in the presence of various salts in a large range of concentrations, the apparent effects of anions and cations were found to superimpose. A large range of ions was examined, including conditions that are in general not of physiological relevance, to explore the physical chemistry driving adaptation to extreme environments. The order of efficiency of cations and anions to maintain the folded form is, for the low-salt transition, Ca(2+) approximately Mg(2+) > Li(+) approximately NH(4)(+) approximately Na(+) > K(+) > Rb(+) > Cs(+), and SO(4)(2)(-) approximately OAc(-) approximately F(-) > Cl(-), and for the high-salt transition, NH(4)(+) approximately Na(+) approximately K(+) approximately Cs(+) > Li(+) > Mg(2+) > Ca(2+), and SO(4)(2)(-) approximately OAc(-) approximately F(-) > Cl(-) > Br(-) > I(-). If a cation or anion is very stabilizing, the effect of the salt ion of opposite charge is limited. Anions of high charge density are always the most efficient to stabilize the folded form, in accordance with the order found in the Hofmeister series, while cations of high charge density are the most efficient only at the lower salt concentrations and tend to denature the protein at higher salt concentrations. The stabilizing efficiency of cations and anions can be related in a minor way to their effect on the surface tension of the solution, but the interaction of ions with sites only present in the folded protein has also to be taken into account. Unfolding at high salt concentrations corresponds to interactions of anions of low charge density and cations of high charge density with the peptide bond, as found for nonhalophilic proteins.  相似文献   

20.
1. Experiments on anomalous osmosis suggested that salts with trivalent cations, e.g. LaCl3, caused isoelectric gelatin to be positively charged, and salts with tetravalent anions, e.g. Na4Fe(CN)6, caused isoelectric gelatin to be negatively charged. In this paper direct measurements of the P.D. between gels of isoelectric gelatin and an aqueous solution as well as between solutions of isoelectric gelatin in a collodion bag and an aqueous solution are published which show that this suggestion was correct. 2. Experiments on anomalous osmosis suggested that salts like MgCl2, CaCl2, NaCl, LiCl, or Na2SO4 produce no charge on isoelectric gelatin and it is shown in this paper that direct measurements of the P.D. support this suggestion. 3. The question arose as to the nature of the mechanism by which trivalent and tetravalent ions cause the charge of isoelectric proteins. It is shown that salts with such ions act on isoelectric gelatin in a way similar to that in which acids or alkalies act, inasmuch as in low concentrations the positive charge of isoelectric gelatin increases with the concentration of the LaCl3 solution until a maximum is reached at a concentration of LaCl3 of about M/8,000; from then on a further increase in the concentration of LaCl3 diminishes the charge again. It is shown that the same is true for the action of Na4Fe(CN)6. From this it is inferred that the charge of the isoelectric gelatin under the influence of LaCl3 and Na4Fe(CN)6 at the isoelectric point is due to an ionization of the isoelectric protein by the trivalent or tetravalent ions. 4. This ionization might be due to a change of the pH of the solution, but experiments are reported which show that in addition to this influence on pH, LaCl3 causes an ionization of the protein in some other way, possibly by the formation of a complex cation, gelatin-La. Na4Fe(CN)6 might probably cause the formation of a complex anion of the type gelatin-Fe(CN)6. Isoelectric gelatin seems not to form such compounds with Ca, Na, Cl, or SO4. 5. Solutions of LaCl3 and Na4Fe(CN)6 influence the osmotic pressure of solutions of isoelectric gelatin in a similar way as they influence the P.D., inasmuch as in lower concentrations they raise the osmotic pressure of the gelatin solution until a maximum is reached at a concentration of about M/2,048 LaCl3 and M/4,096 Na4Fe(CN)6. A further increase of the concentration of the salt depresses the osmotic pressure again. NaCl, LiCl, MgCl2, CaCl2, and Na2SO4 do not act in this way. 6. Solutions of LaCl3 have only a depressing effect on the P.D. and osmotic pressure of gelatin chloride solutions of pH 3.0 and this depressing effect is quantitatively identical with that of solutions of CaCl2 and NaCl of the same concentration of Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号