首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the protein and RNA content of Saccharomyces cerevisiae growing in different media we calculate that ribosome efficiency is changed: incorporation of amino acids into protein decreases from 8.8 amino acids/s per ribosome in fast-growing cells (0.54 doubling/h) to 5.2 amino acids/s per ribosome in slow-growing cells (0.30 doubling/h). We could not detect significant protein turnover in either fast-or slow-growing cultures, so the lower ribosome efficiency does not seem to be an artifact caused by changes in unstable protein production at different growth rates. Nor is the lower ribosome efficiency due to slower migration of ribosomes along mRNA: the times required to complete polypeptides of known molecular weights are the same in slow-growing cells as those previously determined for fast-growing cells [Waldron, Jund & Lacroute (1974) FEBS Lett. 46, 11-16]. We therefore deduce that ribosome efficiency changes in yeast because the fraction of ribosomes engaged in protein synthesis falls (from 84% in fast-growing cells to 50% in slow-growing cells.  相似文献   

2.
It is generally agreed that ribosomes function with reduced efficiency (i.e. a smaller proportion is actually engaged in protein synthesis) in bacteria growing at low growth rates (doubling times greater than 2 h). This paper examines whether the efficiency is constant in bacteria growing at various rates corresponding to doubling times of less than 2 h. Because isotopic methods cannot be used in very rich media, turbidimetric methods have been extended to follow the kinetics of growth immediately following the shift-up of cultures of Escherichia coli ML308 growing in glucose minimal medium or succinate minimal medium into a very rich medium supporting a balanced doubling time of 17.4 min. It is concluded that the efficiency of ribosome participation in protein synthesis is higher in the very rich medium than in the two minimal media, which support doubling times of 43 and 65 min, respectively, at 37 degrees C.  相似文献   

3.
Regulation of Ribosomal Protein Synthesis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

4.
Peripheral hyphae were separated from the remaining thallus of Rhizoctonia solani in exponential and stationary phases of growth. The QO(2) in whole cells of peripheral hyphae from young fungal colonies was on the average 2.6 times and the protein content 1.6 times greater than in peripheral hyphae from old fungal colonies. The overall rate of amino acid uptake was less in old than in young fungal colonies. In a polyuridylic acid-polyphenylalanine incorporating system, the two kinds of peripheral hyphae required ribosomes, supernatant fraction, polyuridylic acid, soluble ribonucleic acid, adenosine triphosphate, and pyruvate kinase. The rate of polyphenylalanine synthesis in old fungal colonies was slower than in the young fungal colonies. The ribosomes and supernatant fraction of the young and old fungal colonies were interchangeable and active. The factor responsible for deficient protein synthesis in old fungal colonies appears to be in the soluble fraction of the mycelium.  相似文献   

5.
J. Sparkuhl  G. Setterfield 《Planta》1977,135(3):267-273
In order to examine the relation of protein synthesis to the onset of growth, changes in ribosome content and activity were compared in aged, metabolically active Jerusalem artichoke (Helianthus tuberosus L.) slices incubated in water or 2,4-dichlorophenoxyacetic acid+kinetin. In water, cells do not grow or divide and rRNA and protein levels remain constant. The percentage membrane-bound (mb) ribosomes drops from 25% to 16% during 24h. At the same time the proportion of ribosomes active in protein synthesis in both free and mb populations declines from about 69% to 54%. In auxin+kinetin, cell expansion occurs and is accompanied by a 3-fold increase in rRNA and a 50% increase in total protein content. The percentage mb ribosomes remains at 25% throughout 48 h of growth. During the first 24h of growth 70% of ribosomes in both free and mb populations are active; this value declines to near water levels at 48 h. Considering the large increase in total ribosomes the number of synthetically active ribosomes is substantially increased during growth. 5-Fluorouracil (5-FU) does not inhibit hormone induced growth but does depress total rRNA content by about one-third. It also reduces [3H]uridine incorporation into ribosomes by 70% and the newly made ribosomes are mostly inactive in protein synthesis. On the other hand, the inhibitor does not significantly affect the proportion of total ribosomes active in protein synthesis and only partially reduces protein accumulation during the second 24 h of growth. It is suggested that while ribosome production is reduced in 5-FU, ribosome turnover is also retarded resulting in retention of near normal capacity for protein synthesis and growth.  相似文献   

6.
Cells derived from Paul's Scarlet rose ( Rosa sp. ) were grown in the chemically defined medium of Nesius. When a stationary phase culture was diluted with fresh medium, growth was initiated after a pronounced lag period. DNA replication, as revealed by thymidine labeling and autoradiography, did not begin until 36 h, and mitotic figures were not observed until 48 h after dilution. A 10–15 fold increase in the rate of protein synthesis occurred during the lag period. This was brought about by a 3.5 fold increase in the amount of ribosomal RNA per cell, plus a doubling of both the percentage of ribosomes that are present as polyribosomes and the average number of ribosomes per polyribosome. The spectrum of polypeptides synthesized by these cells during the lag and early log periods of growth was examined. Polyribosomes were extracted from the cells at intervals preceding and accompanying the initiation of proliferative growth. The polyribosomes were translated in a wheat germ cell-free protein synthesizing system and the 35S-methionine-labeled translation products were separated on polyacrylamide slab gels and by 2-dimensional gel electrophoresis. Comparatively few differences were observed between stationary phase, lag phase and log phase cells in terms of the spectrum of polypeptides synthesized in vitro. However, these various phases of the growth cycle could be characterized by a relatively high rate of synthesis of a few specific polypeptides. That is, while most proteins are synthesized throughout the growth cycle and even in non-growing cells at approximately the same relative rates, there are a few variable proteins whose synthesis marks a particular phase of the growth cycle.  相似文献   

7.
Pim family kinases enhance tumor growth of prostate cancer cells   总被引:3,自引:0,他引:3  
Recent analyses indicate that the expression of the Pim-1 protein kinase is elevated in biopsies of prostate tumors. To identify the mechanism by which the Pim kinases may affect the growth of prostate tumors, we expressed Pim-1, Pim-2, or a kinase-dead Pim-2 protein in human PC3 prostate cancer cells. On implantation of the transfectants in nude mice, the growth of the cells expressing Pim-1 or Pim-2 was significantly faster than the growth of the control cells transfected with the neomycin-resistant gene or the kinase-dead Pim-2 protein. When grown in medium, the doubling time of the Pim-1 and Pim-2 transfectants was faster (0.75 days) than that of the control cells (1.28 days). We, therefore, examined the ability of Pim to control the phosphorylation of proteins that regulate protein synthesis. On growth factor starvation or rapamycin treatment, the Pim-1 and Pim-2 transfectants maintained their ability to phosphorylate 4E-BP1 and S6 kinase, although this phosphorylation did not occur in the control-transfected PC3 cells. We have found that the cellular levels of c-Myc were elevated in the Pim-1 and Pim-2 transfectants under these conditions. The Pim-1 and Pim-2 transfectants have lower levels of serine/threonine protein phosphatase 2A (PP2A) activity and the alpha- and beta-subunit B56gamma of the PP2A phosphatase do not coimmunoprecipitate in these cells. Thus, the effects of Pim on PP2A activity may mediate the levels of c-Myc and the phosphorylation of proteins needed for increased protein synthesis. Both of these changes could have a significant impact on tumor growth.  相似文献   

8.
The timing and control of replication of an F'lac plasmid was investigated in two substrains of Escherichia coli B/r lac/F'lac growing at a variety of rates. The cellular content of covalently closed circular F'lac deoxyribonucleic acid and the cellular mass at the time of F'lac replication both increased as a function of growth rate. The timing of plasmid replication during the division cycle was determined by measuring the inducibility of beta-galactosidase in cells of different ages in exponentially growing cultures. At all growth rates, the rate of induced beta-galactosidase synthesis increased in a step-wise fashion during the division cycle, indicating that the F'lac plasmid replicated at a discrete time in the cycle. At growth rates greater than one doubling per h, the cell age at F'lac replication was indistinguishable from the cell age at chromosomal lac+ replication in an isogenic F- parent. The ratio of plasmids to chromosomal origins decreased from about 0.7 to 0.4 between growth rates of 1.0 to 2.5 doublings per h. These observations are all consistent with replication of F'lac at about the same time in the division cycle as replication of the homologous chromosomal region at these growth rates. This similarity in timing of replication of homologous deoxyribonucleic acid regions was not evident in slower-growing cells.  相似文献   

9.
A prolonged elevation in the concentrations of circulating phenylalanine was maintained in newborn mice by daily injections of phenylalanine and a phenylalanine hydroxylase inhibitor, alpha-methylphenylalanine. The result of this chronic hyperphenylalaninaemia was an accumulation of vacant or inactive monoribosomes that persisted for 18 h of each day. An elongation assay in vitro with brain postmitochondrial supernatants demonstrated that, in addition, there was an equally prolonged decrease in the rates of polypeptide-chain elongation by the remaining brain polyribosomes. Analyses of the free amino acid composition in the brains of hyperphenylalaninaemic mice showed a loss of several amino acids from the brain, particularly the large, neutral amino acids, which are co- or counter-transported across plasma membranes with phenylalanine. When a mixture of these amino acids (leucine, isoleucine, valine, threonine, tryptophan, tyrosine, methionine) was injected into hyperphenylalaninaemic mice, there was an immediate cessation of monoribosome accumulation in the brain and there was no inhibition of the rates of polypeptide-chain elongation. Although the concentrations of the large, neutral amino acids in the brain were partially preserved by treatment of hyperphenylalaninaemic mice with the amino acid mixture, the elevated concentrations of phenylalanine remained unaltered. The amino acid mixture had no detectable effect on brain protein synthesis in the absence of the hyperphenylalaninaemic condition.  相似文献   

10.
By evaluating the kinetics of radioactive labelling of nascent and finished polypeptides, the peptide-chain elongation rate for Escherichia coli B/r at three different growth rates (mu) was determined to be 17 amino acids/s for the fast-growing cells (mu equals 1.3 and 2.0 doublings/h) and 12 amino acids/s for slow-growing cells (mu equals 0.67 doublings/h). The results agree with the growth-rate-dependence of the rate of peptide-chain elongation found for the translation of newly induced beta-galactosidase messenger in this strain and under these conditions of growth [Dalbow & Young (1975) Biochem. J. 150, 13-20]. Together with the previously observed ribosome efficiency at these growth rates [Dennis & Bremer (1974) J. Mol. Biol. 84, 407-422] the results indicate that the fraction of ribosomes engaged in protein synthesis is about 0.8 at all three growth rates.  相似文献   

11.
In Escherichia coli B/r, the relationship between the patterns of chromosome replication and of synthesis of envelope components differs at various growth rates. At growth rates greater than 1.0 doubling per h at 37 degrees C, the average mass and age at initiation of rounds of chromosome replication are similar to those at increase in incorporation of precursors into a major outer membrane protein and phosphatidylethanolamine. At growth rates less than 1.0 doubling per h at 37 degrees C the average mass and age at increase in the synthesis of these envelope components differ from those at initiation of chromosome replication. The average cell mass per chromosomal origin at initiation of rounds of chromosome replication is not a constant and varies between growth rates greater and less than 1.0 doubling per h.  相似文献   

12.
Dihydrofolate reductase (DHFR) enzyme is preferentially synthesized in proliferative cells. A mouse muscle cell line resistant to 300 microM methotrexate was developed to investigate the molecular levels at which DHFR is down-regulated during myogenic withdrawal from the cell cycle. H- alpha R300T cells contained 540 copies of the endogenous DHFR gene and overexpressed DHFR mRNA and DHFR protein. Despite DHFR gene amplification, the cells remained diploid. As H- alpha R300T myoblasts withdrew from the cell cycle and committed to terminal differentiation, DHFR mRNA levels and DHFR synthesis rates decreased with closely matched kinetics. After 15 to 24 h, committed cells contained 5% the proliferative level of DHFR mRNA (80 molecules per committed cell) and synthesized DHFR protein at 6% the proliferative rate. At no point during the commitment process did the decrease in DHFR synthesis rate exceed the decrease in DHFR message. The decrease in DHFR mRNA levels during commitment was sufficient to account fully for the decrease in rates of DHFR synthesis. Furthermore, DHFR mRNA remained polysomal, and the average number of ribosomes per message remained constant (five to six ribosomes per DHFR mRNA). The constancy of polysome size, along with the uniform rate of DHFR synthesis per message, indicated that DHFR mRNA was efficiently translated in postreplicative cells. The results support a model wherein replication-dependent changes in DHFR synthesis rates are determined exclusively by changes in DHFR mRNA levels.  相似文献   

13.
Modeccin inhibits polypeptide-chain elongation catalysed by Artemia salina (brine shrimp) ribosomes by inactivating the 60 S ribosomal subunit. Among the individual steps of elongation, peptide-bond formation, catalysed by 60 S peptidyltransferase, is unaffected by the toxin, whereas the binding of EF 2 (elongation factor 2) to ribosomes is strongly inhibited. Modeccin does not affect the poly(U)-dependent non-enzymic binding of either deacylated tRNAPhe or phenylalanyl-tRNA to ribosomes. The inhibitory effect of modeccin on the EF 1 (elongation factor 1)-dependent binding of phenylalanyl-tRNA is discussed, since it is decreased by tRNAPhe, which stimulates the binding reaction. The analysis of the distribution of ribosome-bound radioactivity during protein synthesis shows that modeccin consistently inhibits the radioactivity bound as long-chain peptides, but depending on the experimental conditions, can leave unchanged or even greatly stimulates the radioactivity bound as phenylalanyl-tRNA and/or short-chain peptides. It is concluded that, during the complete elongation cycle, modeccin does not affect the binding of the first aminoacyl-tRNA to ribosomes, but inhibits some step in the subsequent repetitive activity of either EF 1 or EF 2. The results obtained indicate that the mechanism of action of modeccin is very similar to that of ricin and related plant toxins such as abrin and crotin.  相似文献   

14.
15.
Mutations in ribosomal proteins L7/L12 perturb EF-G and EF-Tu functions   总被引:8,自引:0,他引:8  
In vitro cycling rates of E. coli ribosomes and of elongation factors EF-Tu and EF-G have been obtained and these are compatible with translation rates in vivo. We show that the rate of translocation is faster than 50 s-1 and therefore that the EF-G function is not a rate limiting step in protein synthesis. The in vivo phenotype of some L7/L12 mutants could be accounted for by perturbed EF-Tu as well as EF-G functions. The S12 mutants that we studied were, in contrast, only perturbed in their EF-Tu function, while their EF-G interaction was not impaired in relation to wild type ribosomes.  相似文献   

16.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

17.
18.
Previous studies on the synthesis and function of the protein synthetic machinery through the growth cycle of normal cultured hamster embryo fibroblasts (HA) were extended here to a series of four different clonal lines of polyoma virus-transformed HA cells. Under our culture conditions, these transformed cells could enter a stationary phase characterized by no mitotic cells, very low rates of DNA synthesis, and arrest in a post-mitotic pre-DNA synthetic state. Cellular viability was initially high in stationary phase but, unlike normal cells, transformed cells slowly lost viability. The rate of protein synthesis in the stationary phase of the transformed cells fell to 25-30% of the exponential rate. Though this reduction was similar to that seen in normal cells, it was accomplished by different means. The specific reduction in the ribosome complement per cell to values below that of any cycling cell seen in normal cells, was not seen in any of the transformed lines. This observation, which implies a loss of normal control of ribisome synthesis through the growth cycle after transformation, was confirmed in normal Chinese hamster embryo fibroblasts and transformed CHO cell lines. Normal control of ribosome synthesis was restored in L-73 and LR-73, growth control revertants of one of the transformed CHO lines. The transformed lines reduced their protein synthetic rates in stationary phase either by a greater reduction in the proportion of functioning ribosomes than that seen in normal cells or by a decrease in the elongation rate of functioning ribosomes; the latter effect was not seen in the normal cells. A model for growth control of normal cells and its derangement in transformed cells is presented.  相似文献   

19.
In the haloarchaea Haloferax volcanii, ribosomes are found in the cytoplasm and membrane-bound at similar levels. Transformation of H. volcanii to express chimeras of the translocon components SecY and SecE fused to a cellulose-binding domain substantially decreased ribosomal membrane binding, relative to non-transformed cells, likely due to steric hindrance by the cellulose-binding domain. Treatment of cells with the polypeptide synthesis terminator puromycin, with or without low salt washes previously shown to prevent in vitro ribosomal membrane binding in halophilic archaea, did not lead to release of translocon-bound ribosomes, indicating that ribosome release is not directly related to the translation status of a given ribosome. Release was, however, achieved during cell starvation or stationary growth, pointing at a regulated manner of ribosomal release in H. volcanii. Decreased ribosomal binding selectively affected membrane protein levels, suggesting that membrane insertion occurs co-translationally in Archaea. In the presence of chimera-incorporating sterically hindered translocons, the reduced ability of ribosomes to bind in the transformed cells modulated protein synthesis rates over time, suggesting that these cells manage to compensate for the reduction in ribosome binding. Possible strategies for this compensation, such as a shift to a post-translational mode of membrane protein insertion or maintained ribosomal membrane-binding, are discussed.  相似文献   

20.
Peptide elongation factor 3 (EF-3), which is widely present in yeasts and fungi (Eumycota), does not occur in another lower eukaryote, the unicellular protozoan Tetrahymena pyriformis, as was shown by the following findings: (a) there is no activity to satisfy the EF-3 requirement of yeast ribosomes in the post-ribosomal supernatant fraction from Tetrahymena, and (b) the Tetrahymena ribosomes displayed their full capacity for polyphenylalanine synthesis with purified EF-1 alpha and EF-2 alone from either Tetrahymena or yeast, and their activity on the Tetrahymena ribosomes was not further enhanced by the addition of yeast EF-3, in contrast to the case of the yeast ribosomes. However, as a substitute for the ribosome-activated nucleotidase activity of EF-3, Tetrahymena ribosomes were shown to harbor strong, firmly bound ATPase and GTPase activities, which probably involve the same active site. The ribosome-bound ATPase activity was inhibited by a polyclonal antibody raised against yeast EF-3 with the same inactivation profile as that of polyphenylalanine synthesis on Tetrahymena ribosomes, indicating that the ribosomal ATPase plays an essential role in the elongation process on Tetrahymena ribosomes as previously revealed in the yeast system. It was also shown that the ribosomal nucleotidase plays a pivotal role in the elongation cycle in other eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号