首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary The inclusion of specific salts in Zymomonas mobilis batch sucrose fermentations can limit by-product formation. Sorbitol and fructo-oligosaccharide formation can be reduced and ethanol production enhanced by manipulating mineral salt concentrations. Chloride salts reduced the production of biomass and sorbitol in favour of fructo-oligosaccharide formation at concentrations lower than 10 g NaCl/l or MgCl2. Higher concentrations led to the accumulation of glucose and fructose. Low concentrations of KH2PO4 (<20 g/l) enhanced biomass formation, and the concomitant reduction in sorbitol and fructo-oligosaccharides favoured enhanced ethanol formation. At concentrations above 20 g/l, its effects were similar to those obtained with the chloride salts. Invertase addition at the start of fermentation increased sorbitol formation, whereas addition after the completion of sucrose hydrolysis resulted in the conversion of fructo-oligosaccharides formed into fructose or ethanol. Fermentation with 250 g/l of sugar-cane syrup ( = 130 g sucrose/l) in the presence of 8 g KH2PO4/l, with 0.05 g invertase/l added on the completion of sucrose hydrolysis, resulted in a conversion efficiency of 94% with complete carbon accountability, and only 7 g sorbitol/l. Offprint requests to: H. W. Doelle  相似文献   

2.
Summary Zymomonas mobilis was grown in batch concentrations between 200 and 400 g/l sucrose. The fermentation pattern revealed that the efficiency of sucrose hydrolysis dropped only from 94 to 78.6% whereas the efficiency with which the hydrolyzed products were converted to ethanol decreased from 94 to 43%. The ethanol yields were relatively constant for final concentrations which lay between 80 and 132 g/l. Fermentation times increased to 72 hours at the higher sucrose concentrations. Sorbitol and fructose were identified as the major by-products. Preliminary evidence suggests that the ratio between the two by-products depends on the pH of the culture medium. Results suggest the possibility of processes producing ethanol plus fructose, ethanol plus fructose and sorbitol, or ethanol plus sorbitol in a single-stage batch fermentation.  相似文献   

3.
Summary Non-sorbitol-producing Zymomonas mobilis ACM 3963 was developed from Z. mobilis UQM 2716. This strain was co-immobilised with invertase in alginate and incubated on sucrose-based media. This combination allowed theoretical yields of ethanol to be produced from 100 and 150 g/l sucrose, using both semi-defined media and sugar-cane syrup. No sorbitol or fructo-oligosaccharides were formed in either fermentation. Increased biomass concentrations immobilised in alginate reduced the batch fermentation times of 100 and 150 g/l sucrose by 50–70%, to 3 and 5 hours respectively. This strain also improved the efficiency of the fed-batch fermentation of sucrose.  相似文献   

4.
Summary A flocculent strain of Zymomonas mobilis was used for ethanol production from sucrose. Using a fermentor with cell recycle (internal and external settler) high sugar conversion and ethanol productivity were obtained. At a dilution rate of 0.5 h-1 (giving 96% sugar conversion) the ethanol productivity, yield and concentrations respectively were 20 g/l/h, 0.45 g/g and 40 g/l using a medium containing 100 g/l sucrose. At a sucrose concentration of 150 g/l, the ethanol concentration reached 60 g/l. The ethanol yield was 80% theoretical due to levan and fructo-oligomer formation. No sorbitol was detected. This fermentation was conducted at a range of conditions from 30 to 36°C and from pH 4.0 to 5.5.  相似文献   

5.
Summary Eight Zymomonas strains were compared with respect to their sucrose hydrolysing activity and subsequent ethanol, levan and sorbitol formation. The ethanol yields obtained were within narrow limits, 0.40–0.43 g·g-1 of sucrose. The distribution of by-products differed significantly between the strains tested. A low sucrose hydrolysis rate seemed to be associated with the formation of levan and a high sucrose hydrolysis rate with the formation of sorbitol through accumulation of monomeric sugars. Fructo-oligomers consisting of two fructose and one glucose unit represented the greatest loss of sucrose in the fermentation conditions used.  相似文献   

6.
Summary Fructokinase negativeZymomonas mobilis UQM 2864, was co-immobilised with invertase in alginate and incubated on sucrose-based media in batch and fedbatch culture. The highest fructose concentration achieved was 138 g/l using fed-batch cultivation with sugar-cane syrup-simultaneously producing 79.9 g/l or 10.1% (v/v) ethanol in less than 24 hours. The ethanol and fructose yields were 95 and 84% respectively. Co-immobilisation resulted in faster fermentation times, particularly for the batch fermentations, and complete utilisation of substrate.  相似文献   

7.
A fed-batch process is used for the production of concentrated pure fructose syrup and ethanol from various glucose/fructose mixtures by S. cerevisiae ATCC 36859. Applying this technique, glucose-free fructose syrups with over 250 g/l of this sugar were obtained using High Fructose Corn Syrup and hydrolyzed Jerusalem artichoke juice. By encouraging ethanol evaporation from the reactor and condensing it, a separate ethanol product with a concentration of up to 350 g/l was also produced. The rates of glucose consumption and ethanol production were higher than in classical batch ethanol fermentation processes.  相似文献   

8.
Summary Z.mobilis is strain ZM4 was grown on 250 g/l fructose and sucrose media in batch culture and on 100 and 150 g/l sucrose media in continuous culture. With fructose, a significant reduction in the growth rate and the cell yield was apparent although the other kinetic parameters were similar to those previously reported for fermentation of glucose. With sucrose the major differences were a reduction in ethanol yield, (due to levan formation) and a lower final ethanol concentration. Ethanol inhibition of sucrose metabolism occurred at relatively low ethanol concentrations compared to those inhibiting glucose metabolism.  相似文献   

9.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a fructose negative mutant of Zymomonas mobilis is analysed using a recently described methodology (Ait-Abdelkader and Baratti, Biotechnol. Tech. 1993,329–334) based on polynomial fitting and calculation of instantaneous and overall parameters. These parameters are utilized to describe this mixed-substrate mixed-product fermentation.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qg specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - YSor/F sorbitol yield on fructose, (g/g) - YP/G ethanol yield on glucose, (g/g)  相似文献   

10.
Zymomonas mobilis CP4 fed-batch fermentations of glucose-fructose mixtures were carried out at different operational conditions (aeration, feed rate and substrate concentration) to test their effects on the system productivity. In these fermentations, the main products were ethanol and sorbitol. Kinetic parameters were calculated using the experimental data. However, parameters in the sorbitol synthesis rate were estimated from data recorded in different experiments in order to avoid the effect of the simultaneous cell growth and ethanol synthesis. In this case, the crude cell extract was used as source of the enzyme responsible for the sorbitol synthesis. The highest degree of conversion of fructose into sorbitol obtained with the extract was equal to 71% in a sugar mixture with an initial concentration of 200 g/l. Results obtained in the fed-batch fermentations showed that aeration of the culture has a positive effect on the final biomass concentration. However, final ethanol concentration is lower under aerated conditions. The best sugar yields to biomass and ethanol were 0.032 and 0.411 g/g, respectively. On the other hand, the highest sorbitol yield in the fed-batch fermentations was 0.148 g/g.  相似文献   

11.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a glucose negative mutant ofZymomonas mobilis was monitored. The results were analyzed using a recently described method based on polynomial fitting and calculation of intantaneous and overall parameters. These parameters described well the physiology of this mixed-substrate mixed-product fermentation. Growth of the mutant was greatly inhibited on this medium. Fructose was quantitatively converted into sorbitol while glucose was oxidized into gluconic acid .This latter product was utilized as substrate for cell growth and ethanol production.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qG specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - ySor/f sorbitol yield on fructose, g/g - YP/G ethanol yield on glucose, g/g  相似文献   

12.
Summary Investigations into the relationship between sucrose hydrolysis, sorbitol formation and mineral ion concentration during bioethanol formation by Zymomonas mobilis 2716 revealed two distinct phenomena responsible for carbon flow diversion, a sucrose effect and a salt effect. Neither of the two phenomena affects sucrose hydrolysis, but they divert carbon flow of the fructose monomer leading to its own accumulation, sorbitol or oligosaccharide formation. Sucrose concentrations in excess of 15% (w/v) led to sorbitol formation, the level of which may exceed 2% (w/v) depending upon glucose accumulation during sucrose hydrolysis. Increasing mineral ion concentrations led initially to carbon losses and finally to fructose accumulation instead of sorbitol formation. This carbon loss can be corrected by the addition of invertase, which in turn leads to an increase in sorbitol, fructose and ethanol. Potassium and chloride are the dominant ions responsible for suppression of sorbitol formation and fructose uptake, encouraging oligosaccharide formation. These fructooligosaccharides must be of a type which can be converted to fructose, sorbitol and ethanol through the action of invertase. The requirement of invertase addition to prevent fructooligosaccharide formation is indirect evidence that Z. mobilis 2716 does not produce invertase.Offprint requests to: H. W. Doelle  相似文献   

13.
The production of ethanol and enriched fructose syrups from a synthetic medium with various sucrose concentrations using the mutant Saccharomyces cerevisiae ATCC 36858 was investigated. In batch tests, fructose yields were above 90% of theoretical values for the sucrose concentrations between 35 g/l and 257 g/l. The specific growth rates and biomass yields were from 0.218 to 0.128 h(-1) and from 0.160 to 0.075 g biomass/g of glucose and fructose consumed, respectively. Ethanol yields were in the range of 72 to 85% of theoretical value when sucrose concentrations were above 81 g/l. The volumetric ethanol productivity was 2.23 g ethanol/(l h) in a medium containing 216 g/l sucrose. Fructo-oligosaccharides and glycerol were also produced in the process. A maximum fructo-oligosaccharides concentration (up to 9 g/l) was attained in the 257 g/l sucrose medium in the first 7 h of the fermentation. These sugars started to be consumed when the concentrations of sucrose in the media were less than 30% of its initial values. The fructo-oligosaccharides mixture was composed of 6-kestose (61.5%), neokestose (29.7%) and 1-kestose (8.8%). The concentration of glycerol produced in the process was less than 9 g/l. These results will be useful in the production of enriched fructose syrups and ethanol using sucrose-based raw materials.  相似文献   

14.
Immobilised cells of the bacterium Zymomonas mobilis were used to remove glucose, fructose, and sucrose from food-grade oligosaccharide mixtures. Unpurified fructo-, malto-, isomalto-, gentio-, and inulinoligosaccharides, containing total carbohydrate concentrations of 300 g l(-1), were added to immobilised cells, in 100 ml batch reactors. No pH control or nutrient additions were required. Contaminating glucose, fructose, and sucrose within the mixtures was completely fermented within 12 h. The fermentation end products were ethanol and carbon dioxide. A minor amount of sorbitol was also produced as a fermentation by-product in the inulin-oligosaccharide mixture. No degradation of the oligosaccharides in the mixtures was observed.  相似文献   

15.
A partial least-squares calibration model, relating mid-infrared spectral features with fructose, ethanol, acetate, gluconacetan, phosphate and ammonium concentrations has been designed to monitor and control cultivations of Gluconacetobacter xylinus and production of gluconacetan, a food grade exopolysaccharide (EPS). Only synthetic solutions containing a mixture of the major components of culture media have been used to calibrate the spectrometer. A factorial design has been applied to determine the composition and concentration in the calibration matrix. This approach guarantees a complete and intelligent scan of the calibration space using only 55 standards. This calibration model allowed standard errors of validation (SEV) for fructose, ethanol, acetate, gluconacetan, ammonium and phosphate concentrations of 1.16 g/l, 0.36 g/l, 0.22 g/l, 1.54 g/l, 0.24 g/l and 0.18 g/l, respectively. With G. xylinus, ethanol is directly oxidized to acetate, which is subsequently metabolized to form biomass. However, residual ethanol in the culture medium prevents bacterial growth. On-line spectroscopic data were implemented in a closed-loop control strategy for fed-batch fermentation. Acetate concentration was controlled at a constant value by feeding ethanol into the bioreactor. The designed fed-batch process allowed biomass production on ethanol. This was not possible in a batch process due to ethanol inhibition of bacterial growth. In this way, the productivity of gluconacetan was increased from 1.8 x 10(-3) [C-mol/C-mol substrate/h] in the batch process to 2.9 x 10(-3) [C-mol/C-mol substrate/h] in the fed-batch process described in this study.  相似文献   

16.
Microbial oxidation of D-sorbitol tol-sorbose byAcetobacter suboxydans is of commercial importance since it is the only biochemical process in vitamin C synthesis. The main bottleneck in the batch oxidation of sorbitol to sorbose is that the process is severely inhibited by sorbitol. Suitable fed-batch fermentation designs can eliminate the inherent substrate inhibition and improve sorbose productivity. Fed-batch sorbose fermentations were conducted by using two nutrient feeding strategies. For fed-batch fermentation with pulse feeding highly concentrated sorbitol (600 g/L) along with other nutrients were fed intermittently in four pulses of 0.5 liter in response to the increased DO signal. The fed-batch fermentation was over in 24 h with a sorbose productivity of 13.40 g/L/h and a final sorbose concentration of 320.48 g/L. On the other hand, in fed-batch fermentation with multiple feeds, two pulse feeds of 0.5 liter nutrient medium containing 600 g/L sorbitol was followed by the addition of 1.5 liter nutrient medium containing 600 g/L sorbitol at a constant feed rate of 0.36 L/h till the full working capacity of the reactor. The fermentation was completed in 24 h with an enhanced sorbose productivity of 15.09 g/L/h and a sorbose concentration of 332.60 g/L. The sorbose concentration and productivity obtained by multiple feeding of nutrients was found to be higher than that obtained by pulse feeding and was therefore a better strategy for fed-batch sorbose fermentation.  相似文献   

17.
The Lactobacillus brevis subsp. lindneri CB1 fructose-negative strain utilized fructose in co-fermentation with maltose or glucose. Compared to the maltose (17 g/l) fermentation, the simultaneous fermentation of maltose (10 g/l) and fructose (7 g/l) increased cell yield (A 620from 2.6 to 3.3) and the concentrations of lactic acid and especially of acetic acid (from 2.45 g/l to 3.90 g/l), produced mannitol (1.95 g/l) and caused a decrease in the amount of ethanol (from 0.46 g/l to 0.08 g/l). The utilization of fructose depended on the continuous presence of maltose in the growth medium and the two carbohydrates were consumed in a molar ratio of about 2:1. The presence of tagatose (a fructose stereoisomer) partially inhibited fructose consumption and consequently caused a decrease of the end products of the co-metabolism. Since maltose was naturally present during sourdough fermentation, the addition of only 6 g fructose/kg wheat dough enabled the co-fermentation of maltose and fructose by L. brevis subsp. lindneri CB1. A higher titratable acidity and acetic acid concentration, and a reduced quotient of fermentation (2.7) were obtained by co-fermentation compared with normal sourdough fermentation. Some interpretations of the maltose-fructose co-fermentation are given.  相似文献   

18.
Summary A mutant ofZymomonas mobilis deficient in the utilization of fructose for growth and ethanol formation was shown to lack fructokinase activity. When grown in media which contained glucose+fructose or sucrose, both the mutant and wild type produced sorbitol in amounts up to 60 g·l-1, depending on the initial concentrations of sugars. Sorbitol formation was accompanied by an accumulation of acetaldehyde, gluconate, and acetoin. A ferricyanide-dependent sorbitol dehydrogenase could be localized in the cell membrane; it thus resembles the sorbitol dehydrogenase ofGluconobacter suboxydans. Neither a NAD(P)H dependent reduction of fructose nor a NAD(P) dependent dehydrogenation of sorbitol could be detected in cell-free extracts. The use of fructose-negative mutants ofZ. mobilis for the enrichment of fructose in glucose+fructose mixtures is discussed.  相似文献   

19.
Summary Sorbitol is formed as the major by-product in ethanol fermentations by Zymomonas mobilis when both glucose and fructose are present in the fermentation medium. The amount of sorbitol produced was equivalent to as much as 11% of the original carbon source, decreasing the ethanol yield correspondingly. Only minor amounts of sorbitol were formed from glucose or fructose alone. The formation of sorbitol is apparently a consequence of the inhibition of fructokinase by glucose.  相似文献   

20.
Summary Incomplete fermentation of inulin-containing extracts by Saccharomyces diastaticus allows the simultaneous production of ethanol and syrups with increased fructose content. The yeast strain used ferments sucrose and inulin small polymers but does not easily ferment inulin large polymers. After batch fermentation a production of 62.5 g/L ethanol and 75 g/L of sugars containing up to 94 % fructose can be obtained. A continuous fermentation was performed in a chemostat permitting the adjustment of both productions according to the dilution rate with a maximal ethanol productivity of 3.9 g/L.h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号