首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Loss of endothelial barrier function is implicated in the etiology of metastasis, atherosclerosis, sepsis and many other diseases. Studies suggest that sphingosine-1-phosphate (S1P), particularly HDL-bound S1P (HDL–S1P) is essential for endothelial barrier homeostasis and that HDL–S1P may be protective against the loss of endothelial barrier function in disease. This review summarizes evidence providing mechanistic insights into how S1P maintains endothelial barrier function, highlighting the recent findings that implicate the major S1P carrier, HDL, in the maintenance of the persistent S1P-signaling needed to maintain endothelial barrier function. We review the mechanisms proposed for HDL maintenance of persistent S1P-signaling, the evidence supporting these mechanisms and the remaining fundamental questions.  相似文献   

2.
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that serves as a potent extracellular signaling molecule. Metabolic regulation of extracellular S1P levels impacts key cellular activities through altered S1P receptor signaling. Although the pathway through which S1P is degraded within the cell and thereby eliminated from reuse has been previously described, the mechanism used for S1P cellular uptake and the subsequent recycling of its sphingoid base into the sphingolipid synthesis pathway is not completely understood. To identify the genes within this S1P uptake and recycling pathway, we performed a genome-wide CRISPR/Cas9 KO screen using a positive-selection scheme with Shiga toxin, which binds a cell-surface glycosphingolipid receptor, globotriaosylceramide (Gb3), and causes lethality upon internalization. The screen was performed in HeLa cells with their sphingolipid de novo pathway disabled so that Gb3 cell-surface expression was dependent on salvage of the sphingoid base of S1P taken up from the medium. The screen identified a suite of genes necessary for S1P uptake and the recycling of its sphingoid base to synthesize Gb3, including two lipid phosphatases, PLPP3 (phospholipid phosphatase 3) and SGPP1 (S1P phosphatase 1). The results delineate a pathway in which plasma membrane–bound PLPP3 dephosphorylates extracellular S1P to sphingosine, which then enters cells and is rephosphorylated to S1P by the sphingosine kinases. This rephosphorylation step is important to regenerate intracellular S1P as a branch-point substrate that can be routed either for dephosphorylation to salvage sphingosine for recycling into complex sphingolipid synthesis or for degradation to remove it from the sphingolipid synthesis pathway.  相似文献   

3.
Vascular endothelial cells undergo morphogenesis into capillary networks in response to angiogenic factors. We show here that sphingosine-1-phosphate (SPP), a platelet-derived bioactive lipid, activates the EDG-1 and -3 subtypes of G protein-coupled receptors on endothelial cells to regulate angiogenesis. SPP induces the Gi/mitogen-activated protein kinase/cell survival pathway and the small GTPase Rho- and Raccoupled adherens junction assembly. Both EDG-1-and EDG-3-regulated signaling pathways are required for endothelial cell morphogenesis into capillary-like networks. Indeed, SPP synergized with polypeptide angiogenic growth factors in the formation of mature neovessels in vivo. These data define SPP as a novel regulator of angiogenesis.  相似文献   

4.
Sphingosine-1-phosphate (SIP) is a bioactive sphingolipid metabolite that regulates diverse cellular responses including, growth, survival, cytoskeleton rearrangements and movement. SIP plays an important role during development, particularly in vascular maturation and has been implicated in pathophysiology of cancer, wound healing, and atherosclerosis. This review summarizes the evidence showing that signaling induced by SIP is complex and involves both intracellular and extracellular actions. The intracellular effects of SIP remain speculative awaiting the identification of specific targets whereas the extracellular effects of SIP are clearly mediated through the activation of five specific G protein coupled receptors, called S1P1-5. Recent studies demonstrate that intracellular generated SIP can act in a paracrine or autocrine manner to activate its cell surface receptors.  相似文献   

5.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release.  相似文献   

6.
Sphingosine-1-phosphate (S1P) is a lipid mediator involved in diverse biological processes, from vascular and neural development to the regulation of lymphocyte trafficking. Many of its functions are regulated by five widely expressed S1P G-protein-coupled receptors (S1P(1-5)). S1P is produced mostly intracellularly, thus, much of its potential as an autocrine and paracrine mediator depends on how, when, and where it is generated or secreted out of the cells. However, S1P can also have intracellular activity independent of its receptors, adding to the complexity of S1P function. The mast cell, a major effector cell during an allergic response, has proven instrumental towards understanding the complex regulation and function of S1P. Antigen (Ag) engagement of the IgE receptor in mast cells stimulates sphingosine kinases, which generate S1P and are involved in the activation of calcium fluxes critical for mast cell responses. In addition, mast cells secrete considerable amounts of S1P upon activation, thus affecting the surrounding tissues and recruiting inflammatory cells. Export of S1P is also involved in the autocrine transactivation of S1P receptors present in mast cells. The in vivo response of mast cells, however, is not strictly dependent on their ability to generate S1P, but they are also affected by changes in S1P in the environment previous to Ag challenge. This review will discuss the recent advances towards understanding the intricacies of S1P generation, secretion and regulation in mast cells. In addition, how S1P receptors are activated and their involvement in mast cell functions will also be covered, including new insights on the role of S1P in the mast cell-mediated allergic response of systemic anaphylaxis.  相似文献   

7.
8.
A procedure is described to prepare sphingosine-1-phosphate by treatment of sphingosylphosphocholine with phospholipase D, isolated from Streptomyces chromofuscus. The phosphorylated long chain bases were purified by selective precipitation and differential extraction. Milligram quantities can be obtained in a yield of about 70%. Application of the procedure to dihydrosphingosylphosphocholine results in the synthesis of dihydrosphingosine-1-phosphate.  相似文献   

9.
10.
Sphingosine-1-phosphate (S1P) is a bioactive lysosphingophospholipid that has been implicated in the regulation of vital biological processes. Abundant evidence indicates that S1P acts as both an intracellular messenger and an extracellular ligand for a family of five specific G protein-coupled S1P receptors (S1PRs). Cellular levels of S1P are tightly regulated in a spatio-temporal manner through its synthesis catalyzed by sphingosine kinases (SphKs) and degradation by S1P lyase (SPL) and specific S1P phosphohydrolases. Over the past decade, the identification and cloning of genes encoding S1P metabolizing enzymes has increased rapidly. Overexpression and deletion of these enzymes has provided important insights into the intracellular and the "inside-out" functions of S1P. The purpose of this review is to summarize the current knowledge of S1P metabolizing enzymes, their enzymatic properties, and their roles in the control of cellular functions by S1P.  相似文献   

11.
The endothelial-derived G-protein-coupled receptor EDG-1 is a high-affinity receptor for the bioactive lipid mediator sphingosine-1-phosphate (SPP). In the present study, we constructed the EDG-1-green fluorescent protein (GFP) chimera to examine the dynamics and subcellular localization of SPP-EDG-1 interaction. SPP binds to EDG-1-GFP and transduces intracellular signals in a manner indistinguishable from that seen with the wild-type receptor. Human embryonic kidney 293 cells stably transfected with the EDG-1-GFP cDNA expressed the receptor primarily on the plasma membrane. Exogenous SPP treatment, in a dose-dependent manner, induced receptor translocation to perinuclear vesicles with a tau1/2 of approximately 15 min. The EDG-1-GFP-containing vesicles are distinct from mitochondria but colocalize in part with endocytic vesicles and lysosomes. Neither the low-affinity agonist lysophosphatidic acid nor other sphingolipids, ceramide, ceramide-1-phosphate, or sphingosylphosphorylcholine, influenced receptor trafficking. Receptor internalization was completely inhibited by truncation of the C terminus. After SPP washout, EDG-1-GFP recycles back to the plasma membrane with a tau1/2 of approximately 30 min. We conclude that the high-affinity ligand SPP specifically induces the reversible trafficking of EDG-1 via the endosomal pathway and that the C-terminal intracellular domain of the receptor is critical for this process.  相似文献   

12.
It has become abundantly clear over the past decade that sphingolipids and their metabolites are key signaling molecules. Ceramide, the backbone of all sphingolipids, predominantly inhibits cell growth and induces apoptosis, while its metabolite, sphingosine-1-phosphate promotes growth and survival. Given the interconvertibility of these two opposing signaling molecules, it is essential that any study that examines the effects of one also look at the other. The newly available technology of liquid chromatography-tandem mass spectroscopy (LC-MS/MS) is increasingly being applied for this purpose, as it can quickly identify and measure many different sphingolipids simultaneously. An added benefit of LC-MS/MS is that it is several orders of magnitude more sensitive than enzymatic methods or more traditional chromatographic techniques, allowing smaller sample sizes and increased throughput. Here, we briefly discuss the importance of LC-MS/MS for measuring sphingolipid metabolites and some future directions researchers may take given the increasingly accessibility to this technology.  相似文献   

13.
14.
Sphingosine-1-phosphate (S1P) is lipid messenger involved in the regulation of embryonic development, immune system functions, and many other physiological processes. However, the mechanisms of S1P transport across cellular membranes remain poorly understood, with several ATP-binding cassette family members and the spinster 2 (Spns2) member of the major facilitator superfamily known to mediate S1P transport in cell culture. Spns2 was also shown to control S1P activities in zebrafish in vivo and to play a critical role in zebrafish cardiovascular development. However, the in vivo roles of Spns2 in mammals and its involvement in the different S1P-dependent physiological processes have not been investigated. In this study, we characterized Spns2-null mouse line carrying the Spns2(tm1a(KOMP)Wtsi) allele (Spns2(tm1a)). The Spns2(tm1a/tm1a) animals were viable, indicating a divergence in Spns2 function from its zebrafish ortholog. However, the immunological phenotype of the Spns2(tm1a/tm1a) mice closely mimicked the phenotypes of partial S1P deficiency and impaired S1P-dependent lymphocyte trafficking, with a depletion of lymphocytes in circulation, an increase in mature single-positive T cells in the thymus, and a selective reduction in mature B cells in the spleen and bone marrow. Spns2 activity in the nonhematopoietic cells was critical for normal lymphocyte development and localization. Overall, Spns2(tm1a/tm1a) resulted in impaired humoral immune responses to immunization. This study thus demonstrated a physiological role for Spns2 in mammalian immune system functions but not in cardiovascular development. Other components of the S1P signaling network are investigated as drug targets for immunosuppressive therapy, but the selective action of Spns2 may present an advantage in this regard.  相似文献   

15.
In the present study we have characterized mammalian sphingosine-1-phosphate phosphohydrolase (SPP1), an enzyme that specifically dephosphorylates sphingosine 1-phosphate (S1P) and which differs from previously described lipid phosphate phosphohydrolases. Based on sequence homology to murine SPP1, we cloned the human homolog. Transfection of human embryonic kidney 293 and Chinese hamster ovary cells with murine or human SPP1 resulted in marked increases in SPP1 activity in membrane fractions that were used to examine its enzymological properties. Unlike other known type 2 lipid phosphate phosphohydrolases (LPPs), but similar to the yeast orthologs, mammalian SPP1s are highly specific toward long chain sphingoid base phosphates and degrade S1P, dihydro-S1P, and phyto-S1P. SPP1 exhibited apparent Michaelis-Menten kinetics with S1P as substrate with an apparent K(m) of 38.5 microm and optimum activity at pH 7.5. Similar to other LPPs, SPP1 activity was also independent of any cation requirements, including Mg(2+), and was not inhibited by EDTA but was markedly inhibited by NaF and Zn(2+). However, SPP1 has some significantly different enzymological properties than the LPPs: the aliphatic cation propanolol, which is an effective inhibitor of type 1 phosphatidate phosphohydrolase activities and is only modestly effective as an inhibitor of LPPs, is a potent inhibitor of SPP1; the activity was partially sensitive to N-ethylmaleimide but not to the thioreactive compound iodoacetamide; and importantly, low concentrations of Triton X-100 and other non-ionic detergents were strongly inhibitory. Thus, in agreement with Cluster analysis which shows that outside of the consensus motif there is very little homology between SPP1s and the other type 2 lipid phosphohydrolases, SPP1s are significantly different and divergent from the mammalian LPPs.  相似文献   

16.
Sphingosine-1-phosphate (S1P) is a blood-borne lipid mediator with pleiotropic biological activities. S1P acts via the specific cell surface G-protein-coupled receptors, S1P(1-5). S1P(1) and S1P(2) were originally identified from vascular endothelial cells (ECs) and smooth muscle cells, respectively. Emerging evidence shows that S1P plays crucial roles in the regulation of vascular functions, including vascular formation, barrier protection and vascular tone via S1P(1), S1P(2) and S1P(3). In particular, S1P regulates vascular formation through multiple mechanisms; S1P exerts both positive and negative effects on angiogenesis and vascular maturation. The positive and negative effects of S1P are mediated by S1P(1) and S1P(2), respectively. These effects of S1P(1) and S1P(2) are probably mediated by the S1P receptors expressed in multiple cell types including ECs and bone-marrow-derived cells. The receptor-subtype-specific, distinct effects of S1P favor the development of novel therapeutic tactics for antitumor angiogenesis in cancer and therapeutic angiogenesis in ischemic diseases.  相似文献   

17.
Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.  相似文献   

18.
Over 20?years ago, sphingosine-1-phosphate (S1P) was discovered to be a bioactive signaling molecule. Subsequent studies later identified two related kinases, sphingosine kinase 1 and 2, which are responsible for the phosphorylation of sphingosine to S1P. Many stimuli increase sphingosine kinase activity and S1P production and secretion. Outside the cell, S1P can bind to and activate five S1P-specific G protein-coupled receptors (S1PR1–5) to regulate many important cellular and physiological processes in an autocrine or paracrine manner. S1P is found in high concentrations in the blood where it functions to control vascular integrity and trafficking of lymphocytes. Obesity increases blood S1P levels in humans and mice. With the world wide increase in obesity linked to consumption of high-fat, high-sugar diets, S1P is emerging as an accomplice in liver pathobiology, including acute liver failure, metabolic syndrome, control of blood lipid and glucose homeostasis, nonalcoholic fatty liver disease, and liver fibrosis. Here, we review recent research on the importance of sphingosine kinases, S1P, and S1PRs in liver pathobiology, with a focus on exciting insights for new therapeutic modalities that target S1P signaling axes for a variety of liver diseases.  相似文献   

19.
The outs and the ins of sphingosine-1-phosphate in immunity   总被引:1,自引:0,他引:1  
The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1-5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.  相似文献   

20.
Sphingosine kinase,sphingosine-1-phosphate,and apoptosis   总被引:31,自引:0,他引:31  
The sphingolipid metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) play an important role in the regulation of cell proliferation, survival, and cell death. Cer and Sph usually inhibit proliferation and promote apoptosis, while the further metabolite S1P stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determines cell fate. The relevance of this "sphingolipid rheostat" and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that Sph kinase (SphK), the enzyme that phosphorylates Sph to form S1P, is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic Cer and Sph. Given the role of the sphingolipid rheostat in regulating growth and apoptosis, it is not surprising that sphingolipid metabolism is often found to be disregulated in cancer, a disease characterized by enhanced cell growth, diminished cell death, or both. Anticancer therapeutics targeting SphK are potentially clinically relevant. Indeed, inhibition of SphK has been shown to suppress gastric tumor growth [Cancer Res. 51 (1991) 1613] and conversely, overexpression of SphK increases tumorigenicity [Curr. Biol. 10 (2000) 1527]. Moreover, S1P has also been shown to regulate angiogenesis, or new blood vessel formation [Cell 99 (1999) 301], which is critical for tumor progression. Furthermore, there is intriguing new evidence that S1P can act in an autocrine and/or paracrine fashion [Science 291 (2001) 1800] to regulate blood vessel formation [J. Clin. Invest. 106 (2000) 951]. Thus, SphK may not only protect tumors from apoptosis, it may also increase their vascularization, further enhancing growth. The cytoprotective effects of SphK/S1P may also be important for clinical benefit, as S1P has been shown to protect oocytes from radiation-induced cell death in vivo [Nat. Med. 6 (2000) 1109]. Here we review the growing literature on the regulation of SphK and the role of SphK and its product, S1P, in apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号