首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several recent studies have examined different aspects of mammalian higher order chromatin structure – replication timing, lamina association and Hi-C inter-locus interactions — and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution.  相似文献   

2.
3.
Transgene integration,organization and interaction in plants   总被引:23,自引:0,他引:23  
It has been appreciated for many years that the structure of a transgene locus can have a major influence on the level and stability of transgene expression. Until recently, however, it has been common practice to discard plant lines with poor or unstable expression levels in favor of those with practical uses. In the last few years, an increasing number of experiments have been carried out with the primary aim of characterizing transgene loci and studying the fundamental links between locus structure and expression. Cereals have been at the forefront of this research because molecular, genetic and cytogenetic analysis can be carried out in parallel to examine transgene loci in detail. This review discusses what is known about the structure and organization of transgene loci in cereals, both at the molecular and cytogenetic levels. In the latter case, important links are beginning to be revealed between higher order locus organization, nuclear architecture, chromatin structure and transgene expression.  相似文献   

4.
5.
C Wu  Y C Wong  S C Elgin 《Cell》1979,16(4):807-814
We have compared the chromatin structure in the active and inactive states at loci encoding the major heat shock protein in Drosophila. DNAase I and micrococcal nuclease were used as probes of higher order organization and nucleosomal integrity. Such integrity is gauged here by the characteristic pattern of discrete DNA fragments produced at specific chromosomal loci by nucleolytic cleavage. The specific fragment patterns are visualized by gel electrophoresis, Southern blotting onto nitrocellulose sheets, hybridization with 32P-labeled cloned DNA containing the heat shock genes and autoradiography. Using this criterion, a disruption in nucleosomal and possibly in higher order organization are observed as indicated by a relative loss or smearing of the characteristic discrete DNA fragment patterns from the heat shock loci in the active state. The fragment patterns are restored when cells are allowed to recover from heat shock and these loci return to the inactive state.  相似文献   

6.
We describe a method for analyzing the nuclear localization of specific DNA sequences, with special emphasis on their binding status to the nuclear matrix, depending on the developmental stage of the cells. This method employs high-resolution fluorescence in situ hybridization procedures. For our studies, it was important to examine the nuclear localization of a particular gene locus. Previously, however, it was not possible to detect a single-copy genomic sequence using a DNA probe less than several kilobases in size. We describe here a signal amplification technique based on tyramide which makes such a task possible. Using this method, we monitored single-copy loci using a short, 509-bp DNA sequence that binds in vivo to the T cell factor SATB1 within T cell nuclei, high-salt-extracted nuclei (histone-depleted nuclei generating "halos" with distended chromatin loops), and the nuclear matrix, before and after T cell activation. We found that these loci were anchored onto the nuclear matrix, creating new bases of chromatin loops, only after T cell activation. This experimental strategy, therefore, enabled us to detect the changes in higher order chromatin structure upon activation and study gene regulation at a new dimension: the loop domain structure. The methods shown here can be widely applied to explore other functions involving chromatin, including recombination and replication.  相似文献   

7.
8.
9.
10.
Recent studies have focused attention on chromatin as both a negative and positive regulator of specific nuclear events. The vast majority of this research has been centered on chromatin remodeling and histone post-translational modifications over the regulatory regions of specific genes. However, due the technical difficulties of such studies, the contribution of the higher-order structure of chromatin on the regulation of gene expression has not been as thoroughly investigated and the majority of the initial studies have used biophysical methods or microscopy. Until recent technical developments, the main hindrance for these biophysical investigations of chromatin has been an almost absolute requirement for large amounts of highly purified material. The development of an agarose gel electrophoresis method (quantitative agarose gel electrophoresis), initially designed for the analysis of the three-dimensional structure of purified and in vivo-assembled chromatin over a promoter region, has been expanded to include studies of chromatin in the presence of a Drosophila crude extract. The technique presented in the study reported here will help in paving the way for subsequent analyses of structural modifications of chromatin that are linked with the recruitment of various chromatin-associated factors present in the provided extract(s).  相似文献   

11.
There are now many mammalian examples in which single cell assays of transgene activity have revealed variegated patterns of expression. We have previously reported that transgenes in which globin regulatory elements drive the lacZ reporter gene exhibit variegated expression patterns in mouse erythrocytes, with transgene activity detectable in only a sub-population of circulating erythroid cells. In order to elucidate the molecular mechanism responsible for variegated expression in this system, we have compared the chromatin structure and methylation status of the transgene locus in expressing and non-expressing populations of erythrocytes. We find that there is a difference in the chromatin conformation of the transgene locus between the two states. Relative to active transgenes, transgene loci which have been silenced exhibit a reduced sensitivity to general digestion by DNase I, as well as a failure to establish a transgene-specific DNase I hypersensitive site, suggesting that silenced transgenes are situated within less accessible chromatin structures. Surprisingly, the restrictive chromatin structure observed at silenced transgene loci did not correlate with increased methylation, with transgenes from both active and inactive loci appearing largely unmethylated following analysis with methylation-sensitive restriction enzymes and by sequencing PCR products derived from bisulphite-converted genomic DNA.  相似文献   

12.
13.
14.
Since the initial characterization of chromatin remodeling as an ATP-dependent process, many studies have given us insight into how nucleosome-remodeling complexes can affect various nuclear functions. However, the multistep DNA-histone remodeling process has not been completely elucidated. Although new studies are published on a nearly weekly basis, the nature and roles of interactions of the individual SWI/SNF- and ISWI-based remodeling complexes and DNA, core histones, and other chromatin-associated proteins are not fully understood. In addition, the potential changes associated with ATP recruitment and its subsequent hydrolysis have not been fully characterized. This review explores possible mechanisms by which chromatin-remodeling complexes are recruited to specific loci, use ATP hydrolysis to achieve actual remodeling through disruption of DNA-histone interactions, and are released from their chromatin template. We propose possible roles for ATP hydrolysis in a chromatin-release/target-scanning process that offer an alternative to or complement the often overlooked function of delivering the energy required for sliding or dislodging specific subsets of core histones.  相似文献   

15.
The organization and the mechanisms of condensation of mitotic chromosomes remain unsolved despite many decades of efforts. The lack of resolution, tight compaction, and the absence of function-specific chromatin labels have been the key technical obstacles. The correlation between DNA sequence composition and its contribution to the chromosome-scale structure has been suggested before; it is unclear though if all DNA sequences equally participate in intra- or inter-chromatin or DNA-protein interactions that lead to formation of mitotic chromosomes and if their mitotic positions are reproduced radially. Using high-resolution fluorescence microscopy of live or minimally perturbed, fixed chromosomes in Drosophila embryonic cultures or tissues expressing MSL3-GFP fusion protein, we studied positioning of specific MSL3-binding sites. Actively transcribed, dosage compensated Drosophila genes are distributed along the euchromatic arm of the male X chromosome. Several novel features of mitotic chromosomes have been observed. MSL3-GFP is always found at the periphery of mitotic chromosomes, suggesting that active, dosage compensated genes are also found at the periphery of mitotic chromosomes. Furthermore, radial distribution of chromatin loci on mitotic chromosomes was found to be correlated with their functional activity as judged by core histone modifications. Histone modifications specific to active chromatin were found peripheral with respect to silent chromatin. MSL3-GFP-labeled chromatin loci become peripheral starting in late prophase. In early prophase, dosage compensated chromatin regions traverse the entire width of chromosomes. These findings suggest large-scale internal rearrangements within chromosomes during the prophase condensation step, arguing against consecutive coiling models. Our results suggest that the organization of mitotic chromosomes is reproducible not only longitudinally, as demonstrated by chromosome-specific banding patterns, but also radially. Specific MSL3-binding sites, the majority of which have been demonstrated earlier to be dosage compensated DNA sequences, located on the X chromosomes, and actively transcribed in interphase, are positioned at the periphery of mitotic chromosomes. This potentially describes a connection between the DNA/protein content of chromatin loci and their contribution to mitotic chromosome structure. Live high-resolution observations of consecutive condensation states in MSL3-GFP expressing cells could provide additional details regarding the condensation mechanisms.  相似文献   

16.
Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly casually involved in the formation of cell type specific heterochromatin compartments, composed of (peri)centromeric regions and chromosomal subregions from neighboring chromosomes territories, which contain silent genes.  相似文献   

17.
18.
The study of chromatin, once thought to be a purely structural matrix serving to compact the DNA of the genome into the nucleus, is of increasing value for our understanding of how DNA functions in the cell. This article provides two basic procedures for the study of chromatinin vivo.The first is a DNase I-based method for the treatment of isolated nuclei to resolve the chromatin structure of a particular region; the second employs dimethyl sulfate footprinting of whole cellsin vivoto determine the binding of factors tociselements in the locus of interest. Specific examples illustrating the techniques described are given from our work on the regulation of the yeastPHO8gene, but have also been successfully and reliably applied to the study of many other yeast loci. These procedures make it possible to correlate the binding of atransactivator with an altered or perturbed chromatin organization at a specific locus.  相似文献   

19.
Enhancers play an important role in chromatin opening but the temporal relationship between enhancer activation and the generation of an accessible chromatin structure is poorly defined. Recombination enhancers are essential for chromatin opening and subsequent V(D)J recombination at immunoglobulin loci. In mice, the kappa light chain locus displays an open chromatin structure before the lambda locus yet the same proteins, PU.1/PIP, trigger full enhancer activation of both loci. Using primary B cells isolated from distinct developmental stages and an improved method to quantitatively determine hypersensitive site formation, we find the kappa and lambda recombination enhancers become fully hypersensitive soon after transition to large and small pre-B-II cells, respectively. This correlates strictly with the stages at which these loci are activated. Since these cells are short-lived, these data imply that there is a close temporal relationship between full enhancer hypersensitive site formation and locus chromatin opening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号