首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patch-clamp whole-cell and single-channel current recordings were made from pig pancreatic acinar cells to test the effects of quinine, quinidine, Ba2+ and Ca2+. Voltage-clamp current recordings from single isolated cells showed that high external concentrations of Ba2+ or Ca2+ (88 mM) abolished the outward K+ currents normally associated with depolarizing voltage steps. Lower concentrations of Ca2+ only had small inhibitory effects whereas 11 mM Ba2+ almost blocked the K+ current. 5.5 mM Ba2+ reduced the outward K+ current to less than 30% of the control value. Both external quinine and quinidine (200-500 microM) markedly reduced whole-cell outward K+ currents. In single-channel current studies it was shown that external Ba2+ (1-5 mM) markedly reduced the probability of opening of high-conductance Ca2+ and voltage-activated K+ channels whereas internal Ba2+ (6 X 10(-6) to 3 X 10(-5) M) caused activation at negative membrane potentials and inhibition at positive potentials. Quinidine (200-400 microM) evoked rapid chopping of single K+ channel openings acting both from the outside and inside of the membrane and in this way markedly reduced the total current passing through the channels.  相似文献   

2.
The chincona alkaloid quinine is known to be a bitter tasting substance for various vertebrates. We examined the effects of quinine on isolated taste receptor cells from the bullfrog (Rana catesbeiana). Membrane currents were recorded by whole-cell recording, while quinine hydrochloride was applied extracellularly from a puffer pipette. At the resting potential (-77 +/- 9 mV, mean +/- SD, n = 49 cells), taste cells generated inward currents in response to quinine stimulation (> 1 mM), indicating a depolarizing response in the taste cells. Two types of current responses were observed; a newly found quinine-activated cationic conductance and a previously reported blocking effect of quinine on K+ conductances. The cationic current was isolated from the K+ current by using a Cs(+)-containing patch pipette. The relative permeabilities (Pion) of the quinine-activated cationic conductance were: PNa/PK/PCs = 1:0.5:0.42. The quinine dose-response relation was described by the Hill equation with the K1/2 of 3.6 mM and Hill coefficient of 5.3. When extracellular [Ca2+] (1.8 mM) was reduced to nominally free, the conductance was enhanced by about sixfold. This property is consistent with observations on quinine responses recorded from the gustatory nerve, in vivo. The quinine-induced cationic current was decreased with an application of 8-bromo-cAMP. We conclude that the bitter substance quinine activates a cation channel in taste receptor cells and this channel plays an important role in bitter taste transduction.  相似文献   

3.
The toxicity of Cinchona alkaloids to cell cultures of C. ledgeriana has been studied in relation to alkaloid uptake and possibilities for selecting high-yielding cell lines. The most toxic, quinine, was completely toxic at 5.5 mM. Both quinine and quinidine were more toxic than their unmethoxylated precursors, cinchonidine and cinchonine. The permanently-charged metho-chlorides of quinine and cinchonidine were less toxic than the parent alkaloids, despite showing similar accumulation ratios in 5-day uptake experiments at sub-toxic concentrations (ca 1.7mM). The toxicity of the natural quinoline alkaloids appears to be a non-specific effect which may be caused by intracellular alkalinisation following uptake of the uncharged bases. The use of precursors of quinine and quinidine as toxic agents for the selection of cell lines with enhanced quinine and quinidine production is ruled out by the lower toxicity of these precursors and by the correlation of an apparently non-specific toxicity with uptake.  相似文献   

4.
The effects of quinidine on the fast, the delayed, and the Ca2+- activated K+ outward currents, as well as on Na+ and Ca2+ inward currents, were studied at the soma membrane from neurons of the marine mollusk Aplysia californica. External quinidine blocks these current components but to different degrees. Its main effect is on the voltage- dependent, delayed K+ current, and it resembles the block produced by quaternary ammonium ions (Armstrong, C. M., 1975, Membranes, Lipid Bilayers and Biological Membranes: Dynamic Properties, 3:325-358). The apparent dissociation constant is 28 microM at V = +20 mV. The blocking action is voltage and time dependent and increases during maintained depolarization. The data are consistent with the block occurring approximately 70-80% through the membrane electric field. Internal injection of quinidine has an effect similar to that obtained after external application, but its time course of action is faster. External quinidine may therefore have to pass into or through the membrane to reach a blocking site. The Ca2+-activated K+ current is blocked by external quinidine at concentrations 20-50-fold higher compared with the delayed outward K+ current. In addition, it prolongs the time course of decay of the Ca2+-activated K+ current. Na+ and Ca2+ inward currents are also blocked by external quinidine, but again at higher concentrations. The effects of quinidine on membrane currents can be seen from its effect on action potentials and the conversion of repetitive "beating" discharge activity to "bursting" pacemaker activity.  相似文献   

5.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

6.
Removal of extracellular Cl- has been shown to suppress light-evoked voltage responses of ON bipolar and horizontal cells, but not photoreceptors or OFF bipolar cells, in the amphibian retina. A substantial amount of experimental evidence has demonstrated that the photoreceptor transmitter, L-glutamate, activates cation, not Cl-, channels in these cells. The mechanism for Cl-free effects was therefore reexamined in a superfused retinal slice preparation from the mudpuppy (Necturus maculosus) using whole-cell voltage and current clamp techniques. In a Cl-free medium, light-evoked currents were maintained in rod and cone photoreceptors but suppressed in horizontal, ON bipolar, and OFF bipolar cells. Changes in input resistance and dark current in bipolar and horizontal cells were consistent with the hypothesis that removal of Cl- suppresses tonic glutamate release from photoreceptors. The persistence of light-evoked voltage responses in OFF bipolar cells, despite the suppression of light-evoked currents, is due to a compensatory increase in input resistance. Focal application of hyperosmotic sucrose to photoreceptor terminals produced currents in bipolar and horizontal cells arising from two sources: (a) evoked glutamate release and (b) direct actions of the hyperosmotic solution on postsynaptic neurons. The inward currents resulting from osmotically evoked release of glutamate in OFF bipolar and horizontal cells were suppressed in a Cl-free medium. For ON bipolar cells, both the direct and evoked components of the hyperosmotic response resulted in outward currents and were thus difficult to separate. However, in some cells, removal of extracellular Cl- suppressed the outward current consistent with a suppression of presynaptic glutamate release. The results of this study suggest that removal of extracellular Cl- suppresses glutamate release from photoreceptor terminals. Thus, it is possible that control of [Cl-] in and around photoreceptors may regulate glutamate release from these cells.  相似文献   

7.
Experiments by the voltage clamp method showed that external application of quinidine (5 × 10–5 M) to the Ranvier node membrane of the frog nerve fiber inhibitis both sodium and potassium currents. Blocking of the sodium current is considerably intensified by repetitive depolarization of the membrane (1–10 Hz); the rate of development of the block increases with an increase in stimulation frequency. After the end of stimulation the sodium current gradually returns to its initial level (with a time constant of the order of 30 sec at 12°C). Unlike repetitive depolarization with short (5 msec) stimuli, a prolonged shift (1 sec) of potential toward depolarization has no significant effect on quinidine blocking of the sodium current. Analysis of the current-voltage characteristic curves showed that quinidine blocks outward sodium current more strongly than inward. Batrachotoxin protects sodium channels against the blocking action of quinidine in a concentration of 10–5 M. Inhibition of the outward potassium currents by quinidine is distinctly time-dependent in character: Initially the potassium current rises to a maximum, then falls steadily to a new stationary level. The results agree with the view that quinidine, applied externally, penetrates through the membrane in the basic form and blocks open sodium and potassium channels from within in the charged (protonated) form. The similarity in principle between the action of quinidine and local anesthetics on the sodium suggests that these compounds bind with the same receptor, located in the inner mouth of the sodium channel.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 324–330, May–June, 1982.  相似文献   

8.
The antimalarial properties of the Cinchona alkaloids quinine and quinidine have been known for decades. Surprisingly, 9-epiquinine and 9-epiquinidine are almost inactive. A lack of definitive structural information has precluded a clear understanding of the relationship between molecular structure and biological activity. In the current study, we have determined by single crystal X-ray diffraction the structures of the complexes formed between quinine and quinidine and iron(III) protoporphyrin IX (Fe(III)PPIX). Coordination of the alkaloid to the Fe(III) center is a key feature of both complexes, and further stability is provided by an intramolecular hydrogen bond formed between a propionate side chain of Fe(III)PPIX and the protonated quinuclidine nitrogen atom of either alkaloid. These interactions are believed to be responsible for inhibiting the incorporation of Fe(III)PPIX into crystalline hemozoin during its in vivo detoxification. It is also possible to rationalize the greater activity of quinidine compared to that of quinine.  相似文献   

9.
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of ?60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at ?60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 μm) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nm (Ca-free + 1 mm EGTA in the bath). MCh-activated outward currents were inhibited by 5 mm Ba and by 0.1 mm quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 μm FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells.  相似文献   

10.
A V Maricq  J I Korenbrot 《Neuron》1988,1(6):503-515
Vertebrate rod and cone photoreceptors hyperpolarize when illuminated. However, synaptic input from horizontal cells can depolarize cones and even elicit action potentials. Using the whole-cell tight-seal recording technique, we determined that, in solitary cones isolated from a lizard retina, action potentials can be generated by depolarizing current steps under conditions where only two ionic currents are activated. A dihydropyridine-sensitive, inward Ca2+ current that activates at potentials positive to -40 mV can regeneratively depolarize the cell. Subsequently, a SITS-sensitive, Ca2(+)-dependent outward Cl- current repolarizes the cell. We suggest that these ionic currents may help explain lateral inhibition in the retina.  相似文献   

11.
Kania I  Stadnicka K  Oleksyn BJ 《Chirality》2004,16(3):180-189
X-ray crystal structure analysis was performed on single crystals of two diastereomeric enantiopure quinuclidines, (3R,8R)-3-vinyl-8-hydroxymethyl-quinuclidine (quincoridine, QCD) and (3R,8S)-3-vinyl-8-hydroxymethyl-quinuclidine (quincorine, QCI) as their salts with tartaric and p-toluenesulphonate anions, respectively. The molecules of these quinuclidine derivatives are considered here as fragments of the Cinchona alkaloids, quinidine and quinine. A comparison of the conformational features of QCD, QCI, and Cinchona alkaloids in the crystalline state shows that the molecular geometry of the title compounds is similar to that of threo-alkaloids (e.g., R,R isomer of epicinchonine) rather than to quinidine and quinine. The packing of the molecules in both structures is dominated by intermolecular hydrogen bonds.  相似文献   

12.
The ionic mechanisms of the depolarizing and the hyperpolarizing quinine receptor potentials in the ciliate Paramecium caudatum were examined by using a behavioral mutant strain. The depolarizing receptor potential was induced by stimulating the anterior end of the specimen, and the hyperpolarizing receptor potential by stimulating the posterior end. The amplitude of both the depolarizing and the hyperpolarizing receptor potentials increased linearly with logarithmic increase in quinine concentration applied. Threshold concentration for inducing the depolarizing receptor potential was lower than that for the hyperpolarizing one. The peak level of the depolarizing receptor potential shifted towards the depolarizing direction with increasing external Ca2+ concentration while that of the hyperpolarizing receptor potential shifted in the depolarizing direction with increasing external K+ concentration. Under voltage-clamp conditions, the specimen produced an inward current in response to anterior stimulation, and an outward current in response to posterior stimulation. Both the peak inward and the peak outward currents showed a linear relationship with membrane potential. Current-voltage relationships of the receptor currents indicated conductance increase during the application of quinine. The depolarizing quinine receptor potential appears to be produced by an activation of Ca2+ channels, and the hyperpolarizing quinine receptor potential by an activation of K+ channels. Accepted: 3 October 1997  相似文献   

13.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A systematic and comprehensive study of the conformational spaces of the Cinchona alkaloids quinine, quinidine, cinchonine, cinchonidine, epiquinine, epiquinidine, epicinchonine, and epicinchonidine using the semiempirical PM3 method is described. The results were analyzed in terms of syn/anti and open/closed/hindered and alpha/beta/gamma conformations. Special emphasis was given to the torsion angles T(1) (C(4a')-C(4')-C(9)-C(8)), T(2) (C(4')-C(9)-C(8)-N(1)) and T(3) (H-O(9)-C(9)-C(8)) that define the backbone and the hydroxy conformation, respectively. The results reveal the quasi-enantiomeric relationships between quinine and quinidine and between epiquinine and epiquinidine, and the main structural differences that exist between the therapeutically active Cinchona alkaloids, quinine and quinidine, and their inactive epimers, epiquinine and epiquinidine. The lowest energy conformation of quinine and quinidine is anti-closed-alpha. The lowest energy conformations of epiquinine and epiquinidine are anti-open-beta and anti-open-alpha, respectively. Low energy conformations with an intramolecular hydrogen bond (N(1.)H(.)O(9)) were found in epiquinine (the global minimum) and epiquinidine, but not in quinine and quinidine.  相似文献   

15.
We have used whole-cell patch clamp techniques to record from tall hair cells isolated from the apical half of the alligator cochlea. Some of these cells gave action potentials in response to depolarizing current injections. When the same cells were voltage clamped, large transient inward currents followed by smaller outward currents were seen in response to depolarizing steps. We studied the transient inward current after the outward current had been blocked by external tetraethylammonium (20 mM) or by replacing internal potassium with cesium. It was found to be a sodium current because it was abolished by either replacing external sodium with choline or by external application of tetrodotoxin (100 nM). The sodium current showed voltage-dependent activation and inactivation. Most of the spiking hair cells came from the apex of the cochlea, where they would be subject to low-frequency mechanical stimulation in vivo.  相似文献   

16.
Two morphologically distinct types of horizontal cell have been identified in the all-rod skate retina by light- and electron-microscopy as well as after isolation by enzymatic dissociation. The external horizontal cell is more distally positioned in the retina and has a much larger cell body than does the internal horizontal cell. However, both external and internal horizontal cells extend processes to the photoreceptor terminals where they end as lateral elements adjacent to the synaptic ribbons within the terminal invaginations. Whole-cell voltage-clamp studies on isolated cells similar in appearance to those seen in situ showed that both types displayed five separate voltage-sensitive conductances: a TTX-sensitive sodium conductance, a calcium current, and three potassium-mediated conductances (an anomalous rectifier, a transient outward current resembling an A current, and a delayed rectifier). There was, however, a striking difference between external and internal horizontal cells in the magnitude of the current carried by the anomalous rectifier. Even after compensating for differences in the surface areas of the two cell types, the sustained inward current elicited by hyperpolarizing voltage steps was a significantly greater component of the current profile of external horizontal cells. A difference between external and internal horizontal cells was seen also in the magnitudes of their TEA-sensitive currents; larger currents were usually obtained in recordings from internal horizontal cells. However, the currents through these K+ channels were quite small, the TEA block was often judged to be incomplete, and except for depolarizing potentials greater than or equal to +20 mV (i.e., outside the normal operating range of horizontal cells), this current did not provide a reliable indicator of cell type. The fact that two classes of horizontal cell can be distinguished by their electrophysiological responses, as well as by their morphological appearance and spatial distribution in the retina, suggests that they may play different roles in the processing of visual information within the retina.  相似文献   

17.
A total of 25 alkaloids including benzylisoquinoline, monoterpenoid indole, quinolizidine, tobacco and tropane alkaloids were studied for deleterious effects towards neonate larvae of the generalist herbivore Spodoptera littoralis. Alkaloids were incorporated into artificial diet at several concentrations including the respective natural concentration as present in planta as well as two arbitrarily chosen concentrations (0.1 and 0.2% g−1 fresh wt.) for comparison of the bioactivities. After 5 days of exposure almost all of the alkaloids studied reduced larval growth compared to controls. Larval survival, however, was reduced by more than 50% compared to controls only in the presence of berberine, colchicine and nicotine. Several compounds including for example the Cinchona alkaloids quinidine, quinine or cinchonidine which showed little effect on larval survival after 5 days of exposure turned out to be considerably more active when insects were exposed to the respective alkaloids for their whole larval period. In the chronic exposure studies all of the latter alkaloids caused high larval mortality. The pupal weights were significantly lower than those of the controls. Dietary utilization studies indicated that feeding deterrency is important for the adverse effects caused for example by berberine, quinine or quinidine whereas the high larval mortality observed in the presence of cholchicine or nicotine seems to be primarily due to the acute toxicity of these latter alkaloids.  相似文献   

18.
The voltage-dependent K (KV) channel in Daudi human B lymphoma cells was characterized by using patch-clamp techniques. Whole-cell voltage-clamp experiments demonstrated that cell membrane depolarization induced a transient (time-dependent) outward current followed by a steady-state (time-independent) component. The time-dependent current resembled behavior of the type n channel, such as use dependence and a unique blockade by tetraethylammonium (TEA). Both time-dependent and time-independent currents were blocked by quinine with a similar IC50 (14.2 mM and 12.6 mM). Treatment with antisense oligonucleotide of human Kv1.3 gene significantly reduced both currents by 80%. Single-channel experiments showed that only one type of KV channel was recorded with a unitary conductance of approximately 19 pS. Consistent with whole-cell recordings, the channel activity in cell-attached patches remained in response to prolonged depolarization, and the remaining channel activity was blocked by quinine, but not TEA. Channel activity was scarcely seen in cell-attached patches after antisense treatment. Whole-cell current-clamp data showed that TEA, which blocks only the time-dependent current, caused a slight decrease in the membrane potential. In contrast, quinine and antisense, which block both time-dependent and -independent currents, strongly reduced the membrane potential. These data together suggest that the KV channel in Daudi cells does not completely inactivate and that the remaining channel activity due to this incomplete inactivation appears to be primarily responsible for maintaining the membrane potential.  相似文献   

19.
Cloned human embryonal carcinoma cells (NTERA-2 cl.D1) differentiate into neuron-like cells upon exposure to retinoic acid. Using whole-cell patch-clamp techniques, these putative neurons exhibited rapidly activating and inactivating inward currents upon depolarization as well as outward currents. The electrical characteristics and tetrodotoxin (TTX) sensitivity of the inward currents suggest that they were sodium currents. By contrast, only outward potassium currents were seen in the undifferentiated stem cells. Under current clamp conditions, the neuron-like cells showed regenerative responses. The peaks of these responses never exceeded the O-mV level, perhaps due to the low mean inward current density of 93.8 +/- 17.8 (SEM) microA/cm2:n = 9. The electrophysiological characteristics of these human teratocarcinoma-derived neuron-like cells were consistent with our previous identification of these cells as neurons, but suggest that they may resemble immature embryonic, rather than adult, neurons.  相似文献   

20.
This study examined the role of outward K(+) currents in the acinar cells underlying secretion from Brunner's glands in guinea pig duodenum. Intracellular recordings were made from single acinar cells in intact acini in in vitro submucosal preparations, and videomicroscopy was employed in the same preparation to correlate these measures with secretion. Mean resting membrane potential was -74 mV and was depolarized by high external K(+) (20 mM) and the K(+) channel blockers 4-aminopyridine (4-AP), quinine, and clotrimazole. The cholinergic agonist carbachol (60-2,000 nM; EC(50) = 200 nM) caused a concentration-dependent initial hyperpolarization of the membrane and an associated decrease in input resistance. This hyperpolarization was significantly decreased by 20 mM external K(+) or membrane hyperpolarization and increased by 1 mM external K(+) or membrane depolarization. It was blocked by the K(+) channel blockers tetraethylammonium (TEA), 4-AP, quinine, and clotrimazole but not iberiotoxin. When videomicroscopy was employed to measure dilation of acinar lumen in the same preparation, carbachol-evoked dilations were altered in a parallel fashion when external K(+) was altered. The dilations were also blocked by the K(+) channel blockers TEA, 4-AP, quinine, and clotrimazole but not iberiotoxin. These findings suggest that activation of outward K(+) currents is fundamental to the initiation of secretion from these glands, consistent with the model of K(+) efflux from the basolateral membrane providing the driving force for secretion. The pharmacological profile suggests that these K(+) channels belong to the intermediate conductance group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号