首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The type C natriuretic peptide (CNP)-activated guanylate cyclase (CNP-RGC) is a single-chain transmembrane-spanning protein, containing both CNP binding and catalytic cyclase activities. Upon binding CNP to the extracellular receptor domain, the cytosolic catalytic domain of CNP-RGC is activated, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening signal transduction step which is regulated by ATP binding to the cyclase. This bridges the events of ligand binding and cyclase activation. A defined sequence motif (Gly499-Xa-Xa-Xa-Gly503), termed ATP regulatory module (ARM), is critical for this step. The present study shows that ATP not only amplifies the signal transduction step, it also concomitantly reduces the ligand binding activity of CNP-RGC. Reduction in the ligand binding activity is a consequence of the transformation of the high affinity receptor-form to the low affinity receptor-form. A single ARM residue Gly499 is critical in the mediation of both ATP effects, signal transduction and ligand binding activity of the receptor. Thus, this residue represents an ATP bimodal switch to turn the CNP signal on and off.  相似文献   

2.
Gonzalez J  Rambhadran A  Du M  Jayaraman V 《Biochemistry》2008,47(38):10027-10032
The structural investigations using the soluble ligand binding domain of the AMPA subtype of the glutamate receptor have provided invaluable insight into the mechanistic pathway by which agonist binding to this extracellular domain mediates the formation of cation-selective channels in this protein. These structures, however, are in the absence of the transmembrane segments, the primary functional component of the protein. Here, we have used a modified luminescence resonance energy transfer based method to obtain distance changes due to agonist binding in the ligand binding domain in the presence of the transmembrane segments. These distance changes show that the cleft closure conformational change observed in the isolated ligand binding domain upon binding agonist is conserved in the receptor with the channel segments, thus establishing that the isolated ligand binding domain is a good model of the domain in the receptor containing the transmembrane segments.  相似文献   

3.
Four discontinuous extracellular sequence domains have been proposed to form the ligand binding sites of the ligand-gated ion channel receptor superfamily. In this study, we investigated the role of 12 contiguous residues of the inhibitory glycine receptor that define the proposed "loop A" ligand binding domain. Using the techniques of site-directed mutagenesis and patch-clamp electrophysiology, four of the 12 residues were shown to have impaired ligand binding. Three mutants, 193A, A101H, and N102A, resulted in significant (17-44-fold) increases in the agonist EC50 values as compared with the wild-type glycine receptor, whereas Hill coefficients, ImaX values, and antagonist affinity remained largely unaffected. Consideration of receptor efficacy values indicates that these residues are involved in ligand binding rather than channel activation. A fourth mutant, W94A, failed to give rise to any glycine-activated currents, although cell-surface expression was observed, suggesting that this residue may also be involved in agonist binding. These data provide the most extensive characterization of the loop A ligand binding domain available to date and define two new residue locations, Ile93 and Asn102, as contributing to the four-loop model of ligand binding.  相似文献   

4.
The ANP receptor is a single-transmembrane sequence receptor coupled to guanylate cyclase (GCase). It belongs to a family of GCase-coupled receptors that share a common overall molecular configuration. Collectively, theses GCase-coupled receptors belong to a larger family of single-transmembrane sequence receptors that include growth hormone and cytokine receptors. The signal transduction mechanism of these receptors has not been thoroughly understood. Receptor dimerization (or oligomerization) has been suggested as the mechanism. However, at least for the ANP receptor, dimerization has been seen to occur in the absence of the ligand, suggesting that an additional, as yet unknown effect of hormone binding is responsible for receptor activation. To understand the signaling mechanism, some of the functions and subsites of the ANP receptor critical for signaling have been identified, including the binding stoichiometry, receptor self-association, the juxtamembrane hinge structure containing a signature motif critical for GCase signaling, ANP-binding site residues, chloride-dependence of ANP binding, disulfide linkages, and glycosylation structures. These structures and the functional sites have been identified in the crystal structure of dimerized recombinant extracellular domain of the ANP receptor. The intracellular domain contains a kinase-homologous domain that regulates the activity of the GCase domain responding to ANP binding and also to binding of the allosteric effector ATP. Moreover, this regulatory role of the kinase-homologous domain is modulated by its own phosphorylated state. Although considerable data have been accumulated, the mechanism of ANP receptor signaling has not been well defined. Further studies are necessary to understand how ANP binds to the receptor, what conformational effect is caused by ANP binding, how this effect is transduced across the cell membrane, and how this transmembrane effect leads to stimulation of the GCase catalytic activity.  相似文献   

5.
极低密度脂蛋白受体研究进展   总被引:3,自引:0,他引:3  
极低密度脂蛋白受体 (VLDL R)属于低密度脂蛋白受体 (LDL R)超家族 ,结构上与LDL R极为相似 ,而在结合特性、组织分布及生理功能上存在较大的差异 .近年来的研究表明 ,VLDL R配体结合域中的重复序列参与配体的结合 ,并已初步确定受体N端的 4个重复序列中含有与配体结合的重要位点 ;在哺乳动物体内 ,VLDL R主要分布于脂代谢活跃的组织细胞 ,如 :心肌、骨骼肌和脂肪组织等 ,表明其与脂质尤其是甘油三酯的代谢密切相关 ;动脉粥样硬化 (AS)的病变斑块组织中该受体的表达量很高 ,推测VLDL R参与了AS的病变过程 ;在不同的细胞内 ,VLDL R及其亚型的表达并不一致 ,并发现与各种生理、病理变化相关 ,已经发现多种转录因子参与VLDL R表达的调控 ;基因敲除研究也不断揭示VLDL R新的功能意义 ,特别是发现了VLDL R在脑的发育过程中的重要信号作用 ,这些研究已使人们对VLDL R有了新的更全面的认识  相似文献   

6.
We have previously shown that the binding of epidermal growth factor (EGF) to its receptor can best be described by a model that involves negative cooperativity in an aggregating system (Macdonald, J. L., and Pike, L. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 112–117). However, despite the fact that biochemical analyses indicate that EGF induces dimerization of its receptor, the binding data provided no evidence for positive linkage between EGF binding and dimer assembly. By analyzing the binding of EGF to a number of receptor mutants, we now report that in naive, unphosphorylated EGF receptors, ligand binding is positively linked to receptor dimerization but the linkage is abolished upon autophosphorylation of the receptor. Both phosphorylated and unphosphorylated EGF receptors exhibit negative cooperativity, indicating that mechanistically, cooperativity is distinct from the phenomenon of linkage. Nonetheless, both the positive linkage and the negative cooperativity observed in EGF binding require the presence of the intracellular juxtamembrane domain. This indicates the existence of inside-out signaling in the EGF receptor system. The intracellular juxtamembrane domain has previously been shown to be required for the activation of the EGF receptor tyrosine kinase (Thiel, K. W., and Carpenter, G. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 19238–19243). Our experiments expand the role of this domain to include the allosteric control of ligand binding by the extracellular domain.The EGF2 receptor is a tyrosine kinase composed of an ∼620-amino-acid extracellular domain that recognizes and binds EGF, a single pass α-helical transmembrane domain, and an intracellular tyrosine kinase domain, encompassing roughly residues 685–950 (1). In addition, the receptor contains an ∼230-amino-acid-long C-terminal tail that contains the bulk of the sites of receptor autophosphorylation (24). An intracellular juxtamembrane domain of about 40 residues connects the transmembrane domain to the kinase domain and has been shown to be crucial in the allosteric activation of the EGF receptor kinase (5, 6).In the membrane, the EGF receptor exists as a monomer, but a wealth of data indicate that the binding of EGF induces the formation of EGF receptor dimers (710). Dimerization appears to be mediated in large part by the extracellular domain of the receptor, which is comprised of four subdomains, designated I through IV. X-ray crystallography data suggest that in the absence of ligand, the extracellular domain is held in a closed configuration through the interaction of loops or arms that extend from the backs of subdomains II and IV (11). Upon binding of EGF, this intramolecular tether is released, allowing the receptor to adopt an open conformation in which EGF is tightly bound between subdomains I and III. In this configuration, the “dimerization arm” that was previously involved in tethering the receptor closed mediates the formation of a back-to-back EGF receptor dimer (12, 13).Analyses of the binding of 125I-EGF to its receptor have invariably resulted in concave up Scatchard plots that have been interpreted as indicating the presence of two classes of EGF binding sites. However, we have recently used global analysis of the binding of 125I-EGF to cells expressing increasing levels of EGF receptors to show that EGF binding is best described by a model involving negative cooperativity in an aggregating system (14) (see Fig. 6). Ligand binding is negatively cooperative if the binding of ligand to the first site on a dimer reduces the affinity of the ligand for binding to the second site on the dimer.Open in a separate windowFIGURE 6.Model for the binding of EGF to its receptor. Circles represent receptor subunits. E represents a molecule of EGF. The equilibrium association constants are written above or beside the reaction to which they apply.The concept of cooperativity only applies to existing dimers. It does not relate to the effect of ligand on the assembly or disassembly of those dimers. The effect of ligand on the formation of receptor dimers is captured in the concept of linkage (15, 16). If ligand binding is positively linked to dimer formation, then ligand promotes the assembly of receptor dimers. In a monomer-dimer equilibrium, positive linkage arises when a ligand binds with higher affinity to the first site on the dimer than to the monomer. Under these circumstances, the ligand will preferentially bind to the dimer, shifting the equilibrium in favor of the dimeric species. In the case of the EGF receptor, biochemical data suggest that EGF induces receptor dimerization; however, evidence for positive linkage in binding studies has been lacking.By analyzing the binding of 125I-EGF to cells expressing various EGF receptor mutants, we now report that in naive, unphosphorylated EGF receptors, ligand binding is, in fact, positively linked to receptor dimerization. Autophosphorylation of the EGF receptor abolishes the positive linkage that is present during the initial phase of the ligand binding reaction. Negative cooperativity is present in both the phosphorylated and the non-phosphorylated states of the receptor. Structure-function analyses demonstrate that both cooperativity and linkage are lost when the EGF receptor is truncated immediately after the transmembrane domain. However, both forms of regulation are restored in receptors that include the additional 40 amino acids that correspond to the intracellular juxtamembrane domain. These data expand the role of the intracellular juxtamembrane domain to include the allosteric regulation of EGF binding by the extracellular domain and demonstrate the presence of inside-out signaling in the EGF receptor system.  相似文献   

7.
Armstrong N  Gouaux E 《Neuron》2000,28(1):165-181
Crystal structures of the GluR2 ligand binding core (S1S2) have been determined in the apo state and in the presence of the antagonist DNQX, the partial agonist kainate, and the full agonists AMPA and glutamate. The domains of the S1S2 ligand binding core are expanded in the apo state and contract upon ligand binding with the extent of domain separation decreasing in the order of apo > DNQX > kainate > glutamate approximately equal to AMPA. These results suggest that agonist-induced domain closure gates the transmembrane channel and the extent of receptor activation depends upon the degree of domain closure. AMPA and glutamate also promote a 180 degrees flip of a trans peptide bond in the ligand binding site. The crystal packing of the ligand binding cores suggests modes for subunit-subunit contact in the intact receptor and mechanisms by which allosteric effectors modulate receptor activity.  相似文献   

8.
To examine the role of the ligand binding domain of epidermal growth factor receptor in its dimerization, we studied the dimerization of a truncated form of the receptor that resembles v-erbB in that it lacks a ligand binding domain. Receptor dimerization was determined by sedimentation analysis on sucrose density gradients at different concentrations of Triton X-100. At high concentrations of Triton X-100 (0.2%), the truncated receptor occurred as a monomer and displayed low basal autophosphorylation. By contrast, at low concentrations of Triton X-100 (0.01%), it existed as a dimer and exhibited high basal autophosphorylation. The ability of the truncated receptor to dimerize indicates that the ligand binding domain of the epidermal growth factor receptor is not required for receptor dimerization.  相似文献   

9.
The androgen receptor interacts with the p160 coactivators via two surfaces, one in the ligand binding domain and one in the amino-terminal domain. The ligand binding domain interacts with the nuclear receptor signature motifs, whereas the amino-terminal domain has a high affinity for a specific glutamine-rich region in the p160s. We here describe the implication of two conserved motifs in the latter interaction. The amino-terminal domain of the androgen receptor is a very strong activation domain constituent of Tau5, which is mainly active in the absence of the ligand binding domain, and Tau1, which is only active in the presence of the ligand binding domain. Both domains are, however, implicated in the recruitment of the p160s. Mutation analysis of the p160s has shown that the relative contribution of the two recruitment mechanisms via the signature motifs or via the glutamine-rich region depend on the nature of the enhancers tested. We propose, therefore, that the androgen receptor-coactivator complex has several alternative conformations, depending partially on the context of the enhancer.  相似文献   

10.
11.
We used a comparative approach to identify the fetal liver tyrosine kinase 3 (flt3) ligand structure required for binding and function. Two conserved bovine flt3 ligand isoforms, which differ in a defined region within the extracellular domain, were identified and shown to be uniformly transcribed in individuals with diverse MHC haplotypes. Notably, at the amino acid level, the extracellular domain of the bovine flt3 ligand isoform 1 is 81 and 72% identical with the extracellular domains of the human and murine flt3 ligands, respectively, whereas isoform-2 has a deletion within this domain. Bovine flt3 ligand isoform 1, but not 2, bound the human flt3 receptor and stimulated murine pro B cells transfected with the murine flt3 receptor. This retention of binding and function allowed definition of key residues by identifying sequences conserved among species. We have shown that a highly conserved, 18 aa sequence within the flt3 ligand extracellular domain is required for flt3 receptor binding and function. However, a peptide representing this sequence is insufficient for receptor binding as demonstrated by its failure to inhibit the bovine flt3 ligand isoform 1 binding to the human flt3 receptor. The requirement for flanking structure was confirmed by testing bovine flt3 ligand isoform 1 constructs truncated at specific residues outside the 18 aa sequence. Overall, the flt3 ligand structure required for function is markedly similar to that of the related hemopoietic growth factors, CSF-1 and steel factor. This definition of the required flt3 ligand structure will facilitate development of agonists to enhance dendritic cell recruitment for vaccines and immunotherapy.  相似文献   

12.
The glial cell line-derived neurotrophic factor (GDNF) family comprise a subclass of cystine-knot superfamily ligands that interact with a multisubunit receptor complex formed by the c-Ret tyrosine kinase and a cystine-rich glycosyl phosphatidylinositol-anchored binding subunit called GDNF family receptor alpha (GFRalpha). All four GDNF family ligands utilize c-Ret as a common signaling receptor, whereas specificity is conferred by differential binding to four distinct GFRalpha homologues. To understand how the different GFRalphas discriminate ligands, we have constructed a large set of chimeric and truncated receptors and analyzed their ligand binding and signaling capabilities. The major determinant of ligand binding was found in the most conserved region of the molecule, a central domain predicted to contain four conserved alpha helices and two beta strands. Distinct hydrophobic and positively charged residues in this central region were required for binding of GFRalpha1 to GDNF. Interaction of GFRalpha1 and GFRalpha2 with GDNF and neurturin required distinct subsegments within this central domain, which allowed the construction of chimeric receptors that responded equally well to both ligands. C-terminal segments adjacent to the central domain are necessary and have modulatory function in ligand binding. In contrast, the N-terminal domain was dispensable without compromising ligand binding specificity. Ligand-independent interaction with c-Ret also resides in the central domain of GFRalpha1, albeit within a distinct and smaller region than that required for ligand binding. Our results indicate that the central region of this class of receptors constitutes a novel binding domain for cystine-knot superfamily ligands.  相似文献   

13.
Metabotropic glutamate receptor (mGluR) subtype 1 is a Class III G-protein-coupled receptor that is mainly expressed on the post-synaptic membrane of neuronal cells. The receptor has a large N-terminal extracellular ligand binding domain that forms a homodimer, however, the intersubunit communication of ligand binding in the dimer remains unknown. Here, using the intrinsic tryptophan fluorescence change as a probe for ligand binding events, we examined whether allosteric properties exist in the dimeric ligand binding domain of the receptor. The indole ring of the tryptophan 110, which resides on the upper surface of the ligand binding pocket, sensed the ligand binding events. From saturation binding curves, we have determined the apparent dissociation constants (K(0.5)) of representative agonists and antagonists for this receptor (3.8, 0.46, 40, and 0.89 microm for glutamate, quisqualate, (S)-alpha-methyl-4-carboxyphenylglycine ((S)-MCPG), and (+)-2-methyl-4-carboxyphenylglycine (LY367385), respectively). Calcium ions functioned as a positive modulator for agonist but not for antagonist binding (K(0.5) values were 1.3, 0.21, 59, and 1.2 microm for glutamate, quisqualate, (S)-MCPG, and LY367385, respectively, in the presence of 2.0 mm calcium ion). Moreover, a Hill analysis of the saturation binding curves revealed the strong negative cooperativity of glutamate binding between each subunit in the dimeric ligand binding domain. As far as we know, this is the first direct evidence that the dimeric ligand binding domain of mGluR exhibits intersubunit cooperativity of ligand binding.  相似文献   

14.
CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163 truncation variants, the amino-terminal third of the SRCR region was shown to be crucial for the binding of haptoglobin.hemoglobin complexes. By Western blotting of the CD163 variants, a panel of ten monoclonal antibodies was mapped to SRCR domains 1, 3, 4, 6, 7, and 9, respectively. Only the two antibodies binding to SRCR domain 3 exhibited effective inhibition of ligand binding. Furthermore, analysis of purified native CD163 revealed that proteolytic cleavage in SRCR domain 3 inactivates ligand binding. Calcium protects against cleavage in this domain. Analysis of the calcium sensitivity of ligand binding to CD163 demonstrated that optimal ligand binding requires physiological plasma calcium concentrations, and an immediate ligand release occurs at the low calcium concentrations measured in acidifying endosomes. In conclusion, SRCR domain 3 of CD163 is an exposed domain and a critical determinant for the calcium-sensitive coupling of haptoglobin.hemoglobin complexes.  相似文献   

15.
How sorting receptors recognize amino acid determinants on polypeptide ligands and respond to pH changes for ligand binding or release is unknown. The plant vacuolar sorting receptor BP-80 binds polypeptide ligands with a central Asn-Pro-Ile-Arg (NPIR) motif. tBP-80, a soluble form of the receptor lacking transmembrane and cytoplasmic sequences, binds the peptide SSSFADSNPIRPVTDRAASTYC as a monomer with a specificity indistinguishable from that of BP-80. tBP-80 contains an N-terminal region homologous to ReMembR-H2 (RMR) protein lumenal domains, a unique central region, and three C-terminal epidermal growth factor (EGF) repeats. By protease digestion of purified secreted tBP-80, and from ligand binding studies with a secreted protein lacking the EGF repeats, we defined three protease-resistant structural domains: an N-terminal/RMR homology domain connected to a central domain, which together determine the NPIR-specific ligand binding site, and a C-terminal EGF repeat domain that alters the conformation of the other two domains to enhance ligand binding. A fragment representing the central domain plus the C-terminal domain could bind ligand but was not specific for NPIR. These results indicate that two tBP-80 binding sites recognize two separate ligand determinants: a non-NPIR site defined by the central domain-EGF repeat domain structure and an NPIR-specific site contributed by the interaction of the N-terminal/RMR homology domain and the central domain.  相似文献   

16.
The low density lipoprotein (LDL) receptor is a transmembrane glycoprotein performing "receptor-mediated endocytosis" of cholesterol-rich lipoproteins. At the N terminus, the LDL receptor has modular cysteine-rich repeats in both the ligand binding domain and the epidermal growth factor (EGF) precursor homology domain. Each repeat contains six disulfide-bonded cysteine residues, and this structural motif has also been found in many other proteins. The bovine LDL receptor has been purified and reconstituted into egg yolk phosphatidylcholine vesicle bilayers. Using gel electrophoresis and cryoelectron microscopy (cryoEM), the ability of the reconstituted LDL receptor to bind its ligand LDL has been demonstrated. After reduction of the disulfide-bonds in the N-terminal domain of the receptor, the reduced LDL receptor was visualized using cryoEM; reduced LDL receptors showed images with a diffuse density region at the distal end of the extracellular domain. Gold labeling of the reduced cysteine residues was achieved with monomaleimido-Nanogold, and the bound Nanogold was visualized in cryoEM images of the reduced, gold-labeled receptor. Multiple gold particles were observed in the diffuse density region at the distal end of the receptor. Thus, the location of the ligand binding domain of the LDL receptor has been determined, and a model is suggested for the arrangement of the seven cysteine-rich repeats of the ligand binding domain and two EGF-like cysteine-rich repeats of the EGF precursor homology domain.  相似文献   

17.
Interleukin-5 (IL-5) is a key cytokine for the production, differentiation, and activation of eosinophils. IL-5 is a member of the four helical bundle family of cytokines, and in common with many members of the cytokine family it binds to a heterodimeric receptor composed of a ligand binding α-chain and a signal-transducing β-chain. We have established two receptor/ligand binding assays based on the extracellular domain of the receptor α-chain which we have produced as a fusion protein. One assay is based on scintillation proximity fluoromicrospheres and radiolabeled ligand and the other on detection of biotinylated ligand binding to immobilized receptor using a chemiluminescent substrate in a 96-well microtiter plate format. Both receptor binding assays have been optimized for high throughput screening for receptor antagonists. These assays were also used for analytical purposes and the binding of ligand to the receptor α-chain was compared directly to receptor binding assays performed on TF-1 cells which express the receptor αβ-heterodimer. These three assays have been used to study site-directed mutants of IL-5 to determine the important residues for interaction of the cytokine with each chain of the receptor (P. Graber et al. (1995) J. Biol. Chem. 270, 15762-15769).  相似文献   

18.
The ligand binding domain of the low density lipoprotein (LDL) receptor contains seven imperfect repeats of a 40-amino acid cysteine-rich sequence. Each repeat contains clustered negative charges that have been postulated as ligand-binding sites. The adjacent region of the protein, the growth factor homology region, contains three cysteine-rich repeats (A-C) whose sequence differs from those in the ligand binding domain. To dissect the contribution of these different cysteine-rich repeats to ligand binding, we used oligonucleotide-directed mutagenesis to alter expressible cDNAs for the human LDL receptor which were then introduced into monkey COS cells by transfection. We measured the ability of the mutant receptors to bind LDL, which contains a single protein ligand for the receptor (apoB-100), and beta-migrating very low density lipoprotein (beta-VLDL), which contains apoB-100 plus multiple copies of another ligand (apoE). The results show that repeat 1 is not required for binding of either ligand. Repeats 2 plus 3 and repeats 6 plus 7 are required for maximal binding of LDL, but not beta-VLDL. Repeat 5 is required for binding of both ligands. Repeat A in the growth factor homology region is required for binding of LDL, but not beta-VLDL. Repeat B is not required for ligand binding. These results support a model for the LDL receptor in which various repeats play additive roles in ligand binding, each repeat making a separate contribution to the binding event.  相似文献   

19.
Aromatic residues play an important role in the ligand-binding domain of Cys loop receptors. Here we examine the role of the 11 tyrosines in this domain of the 5-HT3 receptor in ligand binding and receptor function by substituting them for alanine, for serine, and, for some residues, also for phenylalanine. The mutant receptors were expressed in HEK293 cells and Xenopus oocytes and examined using radioligand binding, Ca2+ imaging, electrophysiology, and immunochemistry. The data suggest that Tyr50 and Tyr91 are critical for receptor assembly and/or structure, Tyr141 is important for antagonist binding and/or the structure of the binding pocket, Tyr143 plays a critical role in receptor gating and/or agonist binding, and Tyr153 and Tyr234 are involved in ligand binding and/or receptor gating. Tyr73, Tyr88, Tyr94, Tyr167, and Tyr240 do not appear to play major roles either in the structure of the extracellular domain or in ligand binding. The data support the location of these residues on a model of 5-HT docked into the ligand-binding domain and also provide evidence for the structural similarity of the extracellular domain to AChBP and the homologous regions of other Cys loop ligand-gated ion channels.  相似文献   

20.
The receptor kinase EFR of Arabidopsis thaliana detects the microbe-associated molecular pattern elf18, a peptide that represents the N terminus of bacterial elongation factor Tu. Here, we tested subdomains of EFR for their importance in receptor function. Transient expression of tagged versions of EFR and EFR lacking its cytoplasmic domain in leaves of Nicotiana benthamiana resulted in functional binding sites for elf18. No binding of ligand was found with the ectodomain lacking the transmembrane domain or with EFR lacking the first 5 of its 21 leucine-rich repeats (LRRs). EFR is structurally related to the receptor kinase flagellin-sensing 2 (FLS2) that detects bacterial flagellin. Chimeric receptors with subdomains of FLS2 substituting for corresponding parts of EFR were tested for functionality in ligand binding and receptor activation assays. Substituting the transmembrane domain and the cytoplasmic domain resulted in a fully functional receptor for elf18. Replacing also the outer juxtamembrane domain with that of FLS2 led to a receptor with full affinity for elf18 but with a lower efficiency in response activation. Extending the substitution to encompass also the last two of the LRRs abolished binding and receptor activation. Substitution of the N terminus by the first six LRRs from FLS2 reduced binding affinity and strongly affected receptor activation. In summary, chimeric receptors allow mapping of subdomains relevant for ligand binding and receptor activation. The results also show that modular assembly of chimeras from different receptors can be used to form functional receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号