首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lan G  Sun SX 《Biophysical journal》2006,91(11):4002-4013
Myosin-VI is a dimeric isoform of unconventional myosins. Single molecule experiments indicate that myosin-VI and myosin-V are processive molecular motors, but travel toward opposite ends of filamentous actin. Structural studies show several differences between myosin-V and VI, including a significant difference in the light-chain domain connecting the motor domains. Combining the measured kinetics of myosin-VI with the elasticity of the light chains, and the helical structure of F-actin, we compare and contrast the motility of myosin-VI with myosin-V. We show that the elastic properties of the light-chain domain control the stepping behavior of these motors. Simple models incorporating the motor elastic energy can quantitatively capture most of the observed data. Implications of our result for other processive motors are discussed.  相似文献   

2.
Regulation of myosin-VI targeting to endocytic compartments   总被引:4,自引:1,他引:3  
Myosin-VI has been implicated in endocytic trafficking at both the clathrin-coated and uncoated vesicle stages. The identification of alternative splice forms led to the suggestion that splicing defines the vesicle type to which myosin-VI is recruited. In contrast to this hypothesis, we find that in all cell types examined, myosin-VI is associated with uncoated endocytic vesicles, regardless of splice form. GIPC, a PDZ-domain containing adapter protein, co-assembles with myosin-VI on these vesicles. Myosin-VI is only recruited to clathrin-coated vesicles in cells that express high levels of Dab2, a clathrin-binding adapter protein. Overexpression of Dab2 is sufficient to reroute myosin-VI to clathrin-coated pits in cells where myosin-VI is normally associated with uncoated vesicles. In normal rat kidney (NRK) cells, which express high endogenous levels of Dab2, splicing of the globular tail domain further modulates targeting of ectopically expressed myosin-VI. Although myosin-VI can be recruited to clathrin-coated pits, we find no requirement for myosin-VI motor activity in endocytosis in NRK cells. Instead, our data suggest that myosin-VI recruitment to clathrin-coated pits may be an early step in the recruitment of GIPC to the vesicle surface.  相似文献   

3.
Na+/D-glucose symport is a secondary active glucose transport mechanism expressed only in kidney proximal tubule and in small intestine. A monoclonal antibody that recognized the Na+/glucose symporter of pig renal brush border membranes also recognized a 75-kD protein in apical membranes isolated from highly differentiated LLC-PK1 cultures, an epithelial cell line of pig renal proximal tubule origin. The 75-kD antigen was enriched from solubilized LLC-PK1 apical membranes by means of high-pressure liquid chromatography. The symporter antigen became apparent on the apical membrane surface after the development of a confluent monolayer in correlation with the expression of transport activity. Long-term treatment of cultures with the differentiation inducer hexamethylene bisacetamide was accompanied by a dramatically increased expression of the symporter antigen as detected quantitatively by Western blot analysis and qualitatively by immunofluorescence staining. The number of symporter-positive cells was dramatically increased after inducer treatment as predicted for differentiation-regulated expression. These results identify a 75-kD protein as a component of a developmentally regulated renal Na+/glucose symporter expressed in cell culture.  相似文献   

4.
Iwaki M  Iwane AH  Ikebe M  Yanagida T 《Bio Systems》2008,93(1-2):39-47
Conventional form to function as a vesicle transporter is not a 'single molecule' but a coordinated 'two molecules'. The coordinated two molecules make it complicated to reveal its mechanism. To overcome the difficulty, we adopted a single-headed myosin-VI as a model protein. Myosin-VI is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. However, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting doubt on its processivity. Using single molecule techniques, we show that green fluorescent protein (GFP)-fused single-headed myosin-VI does not move processively. However, when coupled to a 200 nm polystyrene bead (comparable to an intracellular vesicle in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40 nm) steps. Furthermore, we found that a single-headed myosin-VI-bead complex moved more processively in a high-viscous solution (40-fold higher than water) similar to cellular environment. Because diffusion of the bead is 60-fold slower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing the head's rebinding following detachment and supporting processive movement of the bead-monomer complex. This investigation will help us understand how molecular motors utilize Brownian motion in cells.  相似文献   

5.
We have investigated the folding of the myosin motor domain using a chimera of an embryonic striated muscle myosin II motor domain fused on its COOH terminus to a thermal stable, fast folding variant of green fluorescent protein (GFP). In in vitro expression assays, the GFP domain of the chimeric protein, S1(795)GFP, folds rapidly enabling us to monitor the folding of the motor domain using fluorescence. The myosin motor domain folds very slowly and transits through multiple intermediates that are detectable by gel filtration chromatography. The distribution of the nascent protein among these intermediates is strongly dependent upon temperature. At 25 degrees C and above the predominant product is an aggregate of S1(795)GFP or a complex with other lysate proteins. At 0 degrees C, the motor domain folds slowly via an energy independent pathway. The unusual temperature dependence and slow rate suggests that folding of the myosin motor is highly susceptible to off-pathway interactions and aggregation. Expression of the S1(795)GFP in the C2C12 muscle cell line yields a folded and functionally active protein that exhibits Mg(2+)ATP-sensitive actin-binding and myosin motor activity. In contrast, expression of S1(795)GFP in kidney epithelial cell lines (human 293 and COS 7 cells) results in an inactive and aggregated protein. The results of the in vitro folding assay suggest that the myosin motor domain does not fold spontaneously under physiological conditions and probably requires cytosolic chaperones. The expression studies support this conclusion and demonstrate that these factors are optimized in muscle cells.  相似文献   

6.
Mouse myosin-VIIb, a novel unconventional myosin, was cloned from the inner ear and kidney. The human myosin-VIIb (HGMW-approved symbol MYO7B) sequence and exon structure were then deduced from a human BAC clone. The mouse gene was mapped to chromosome 18, approximately 0.5 cM proximal to D18Mit12. The human gene location at 2q21.1 was deduced from the map location of the BAC and confirmed by fluorescence in situ hybridization. Myosin-VIIb has a conserved myosin head domain, five IQ domains, two MyTH4 domains coupled to two FERM domains, and an SH3 domain. A phylogenetic analysis based on the MyTH4 domains suggests that the coupled MyTH and FERM domains were duplicated in myosin evolution before separation into different classes. Myosin-VIIb is expressed primarily in kidney and intestine, as shown by Northern and immunoblot analyses. An antibody to myosin-VIIb labeled proximal tubule cells of the kidney and enterocytes of the intestine, specifically the distal tips of apical microvilli on these transporting epithelial cells.  相似文献   

7.
Myosins exist that are fused to domains that harbour signalling activities. Class III myosins (NINAC) are protein kinases that play important roles in phototransduction. Class IX myosins inactivate the small G-protein Rho that acts as molecular switch. Because these myosins interact via their myosin head domain with actin filaments, they link signal transduction to the actin cytoskeleton. The exact motor properties of these myosins, however, remain to be determined.  相似文献   

8.
Structural and functional characteristics of the motor proteins of the actomyosin motility system, myosins, which can be grouped into 15 classes, are presented in brief. The structure of the myosin molecule is considered: a conservative motor domain of the head with ATP- and actin-binding sites, a head segment associated with light chains, and a tail, which is variable in various myosins performing different functions. We address the progress in the studies of myosin functioning as a motor in the in vitroassay systems. Not only animal and prokaryotic organisms but also Characean algae and plant pollen tubes contributed considerably to these studies as sources of actin and myosin. Higher-plant myosins are characterized. The data are presented concerning the interaction between some myosin forms and other actin-binding proteins and, on the other hand, the phosphoinositol signal transduction pathway, the integral plasmalemmal proteins, and the proteins of the extracellular matrix. The most important idea formulated in the review is that a dynamic reorganization of the actin cytoskeleton is a structural basis for physiological processes in plants.  相似文献   

9.
Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton.  相似文献   

10.
The transport of nucleosides by LLC-PK1 cells, a continuous epithelial cell line derived from pig kidney, was characterised. Uridine influx was saturable (apparent Km approximately 34 microM at 22 degrees C) and inhibited by greater than 95% by nitrobenzylthioinosine (NBMPR), dilazep and a variety of purine and pyrimidine nucleosides. In contrast to other cultured animal cells, the NBMPR-sensitive nucleoside transporter in LLC-PK1 cells exhibited both a high affinity for cytidine (apparent Ki approximately 65 microM for influx) and differential 'mobility' of the carrier (the kinetic parameters of equilibrium exchange of formycin B are greater than those for formycin B influx). An additional minor component of sodium-dependent uridine influx in LLC-PK1 cells became detectable when the NBMPR-sensitive nucleoside transporter was blocked by the presence of 10 microM NBMPR. This active transport system was inhibited by adenosine, inosine and guanosine but thymidine and cytidine were without effect, inhibition properties identical to the N1 sodium-dependent nucleoside carrier in bovine renal outer cortical brush-border membrane vesicles (Williams and Jarvis (1991) Biochem. J. 274, 27-33). Late proximal tubule brush-border membrane vesicles of porcine kidney were shown to have a much reduced Na(+)-dependent uridine uptake activity compared to early proximal tubule porcine brush-border membrane vesicles. These results, together with the recent suggestion of the late proximal tubular origin of LLC-PK1 cells, suggest that in vivo nucleoside transport across the late proximal tubule cell may proceed mainly via a facilitated-diffusion process.  相似文献   

11.
Sodium-dependent dicarboxylate transporters (NaDC) include low-affinity NaDC1 and high-affinity NaDC3. Despite high similarities structurally and functionally, both are localized to opposite surfaces of renal tubular cells. The molecular mechanisms and localization signals leading to this polarized distribution remain unknown. In this study, distribution of NaDC3 in human kidney tissue was firstly observed by immunohistochemistry and immunofluorescence. Then, EGFP-fused wild-type, NH2- and COOH-terminal deletion and point mutants of NaDC3, and chimera between NaDC3 and NaDC1, were generated and transfected into polarized renal cells lines, LLC-PK1 and MDCK. Their subcellular localizations were analyzed by laser confocal microscopy. Immunolocalization results revealed that NaDC3 was expressed at basolateral membrane of human renal proximal tubular epithelia. Confocal examinations showed that wild-type NaDC3 was targeted to the basolateral membrane of MDCK and LLC-PK1. Deletion mutations indicated that the basolateral targeting signal of NaDC3 located within a short sequence AKKVWSARR of its amino-terminal cytoplasmic domain. Addition of this sequence could redirect apical NaDC1 to the basolateral membrane of LLC-PK1. Point mutagenesis revealed that mutation of either of two hydrophobic amino acids V and W in this short sequence largely redirected NaDC3 to both apical and basolateral surfaces of LLC-PK, indicating that the two hydrophobic amino acids are critical for the basolateral targeting of NaDC3. Our studies provide direct evidence of the localization of NaDC3 at the basolateral membrane of human renal proximal tubule cells and identify a di-hydrophobic amino acid motif VW as basolateral localization signal in the N-terminal cytoplasmic domain of NaDC3.  相似文献   

12.
Kinetic adaptation of muscle and non-muscle myosins plays a central role in defining the unique cellular functions of these molecular motor enzymes. The unconventional vertebrate class VII myosin, myosin VIIb, is highly expressed in polarized cells and localizes to highly ordered actin filament bundles such as those found in the microvilli of the intestinal brush border and kidney. We have cloned mouse myosin VIIb from a cDNA library, expressed and purified the catalytic motor domain, and characterized its actin-activated ATPase cycle using quantitative equilibrium and kinetic methods. The myosin VIIb steady-state ATPase activity is slow (approximately 1 s(-1)), activated by very low actin filament concentrations (K(ATPase) approximately 0.7 microm), and limited by ADP release from actomyosin. The slow ADP dissociation rate constant generates a long lifetime of the strong binding actomyosin.ADP states. ADP and actin binding is uncoupled, which enables myosin VIIb to remain strongly bound to actin and ADP at very low actin concentrations. In the presence of 2 mm ATP and 2 microm actin, the duty ratio of myosin VIIb is approximately 0.8. The enzymatic properties of actomyosin VIIb are suited for generating and maintaining tension and favor a role for myosin VIIb in anchoring membrane surface receptors to the actin cytoskeleton. Given the high conservation of vertebrate class VII myosins, deafness phenotypes arising from disruption of normal myosin VIIa function are likely to reflect a loss of tension in the stereocilia of inner ear hair cells.  相似文献   

13.
Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (V(max) = 2.28 +/- 0.099 nmoles/mg protein min, Km = 4.1 +/- 0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (V(max) = 0.45 +/- 0.076 nmoles/mg protein min, K(m) = 1.7 +/- 0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (V(max) = 1.68 +/- 0.215 nmoles/mg protein min, Km = 4.9 +/- 0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1-S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.  相似文献   

14.
15.
The kidney is a key regulator of phosphate homeostasis. There are two predominant renal sodium phosphate cotransporters, NaPi2a and NaPi2c. Both are regulated by parathyroid hormone (PTH), which decreases the abundance of the NaPi cotransporters in the apical membrane of renal proximal tubule cells. The time course of PTH-induced removal of the two cotransporters from the apical membrane, however, is markedly different for NaPi2a compared with NaPi2c. In animals and in cell culture, PTH treatment results in almost complete removal of NaPi2a from the brush border (BB) within 1 h whereas for NaPi2c this process in not complete until 4 to 8 h after PTH treatment. The reason for this is poorly understood. We have previously shown that the unconventional myosin motor myosin VI is required for PTH-induced removal of NaPi2a from the proximal tubule BB. Here we demonstrate that myosin VI is also necessary for PTH-induced removal of NaPi2c from the apical membrane. In addition, we show that, while at baseline the two cotransporters have similar diffusion coefficients within the membrane, after PTH addition the diffusion coefficient for NaPi2a initially exceeds that for NaPi2c. Thus NaPi2c appears to remain "tethered" in the apical membrane for longer periods of time after PTH treatment, accounting, at least in part, for the difference in response times to PTH of NaPi2a versus NaPi2c.  相似文献   

16.
The LLC-PK1 cell line transports phosphate (Pi), glucose, and amino acids using carriers similar to those in proximal tubular cells. Others have reported that when monolayers reach confluence, hexose transport increases and activity of the A-amino acid transporter falls. The present study evaluates Pi uptake by two continuous cell lines derived from renal proximal tubule, and demonstrates that phosphate uptake falls sharply upon reaching confluence in LLC-PK1 cells but not in cultured opossum kidney (OK) cells. The fall in Pi uptake in LLC-PK1 cells at confluence represents a halving in Vmax for Na-dependent phosphate uptake (2.33 vs. 5.00 nmol/mg protein/5 min) without a change in Km (82 vs. 94 microM). Suppression of phosphate transport in confluent monolayers of LLC-PK1 cells is completely reversed by bringing the cells into suspension. As has been shown for the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA), exposure of monolayers to serum stimulates phosphate uptake, but unlike phorbol ester, serum does so without stimulating alanine uptake. OK cells differ from LLC-PK1 in that no change occurs in Pi uptake at confluence, although they resemble LLC-PK1 cells in that sugar uptake rises and alanine uptake falls at confluence. The different temporal patterns for Pi uptake in the two cell lines indicates that developmental change in the uptake of Pi is not linked to that of glucose or alanine.  相似文献   

17.
Reddy AS  Day IS 《Genome biology》2001,2(7):research0024.1-research002417

Background

Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants.

Results

Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication.

Conclusions

Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.  相似文献   

18.
2,3-Butanedione 2-monoxime (BDM) is a general inhibitor of myosin ATPases of eukaryotic cells, and its effects on animal and yeast cells are well described. Using immunofluorescence and electron microscopy, we have analyzed the impacts of BDM on distributions of plant myosins, actin filaments (AFs), microtubules (MTs), and cortical endoplasmic reticulum (ER) elements in various cell types of maize root apices. Treatment of growing maize roots with BDM altered the typical distribution patterns of unconventional plant myosin VIII and of putative maize homologue(s) of myosin II. This pharmacological agent also induced a broad range of impacts on AFs and on cortical ER elements associated with plasmodesmata and pit fields. BDM-mediated effects on the actomyosin cytoskeleton were especially pronounced in cells of the root transition zone. Additionally, BDM elicited distinct reactions in the MT cytoskeleton; endoplasmic MTs vanished in all cells of the transition zone and cortical MTs assembled in increased amounts preferentially at plasmodesmata and pit-fields. Our data indicate that AFs and MTs interact together via BDM-sensitive plant myosins, which can be considered as putative integrators of the plant cytoskeleton. Morphometric analysis revealed that cell growth was prominently inhibited in the transition zone and the apical part, but not the central part, of the elongation region. Obviously, myosin-based contractility of the actin cytoskeleton is essential for the developmental progression of root cells through the transition zone.  相似文献   

19.
Class IX myosins are unique among the many classes of known actin-based motors in that the tail region of these myosins contains a GTPase-activating protein domain for the small GTP-binding protein, Rho. Previous studies on human myosin-IXb indicate that this myosin is mechanochemically active and exhibits actin-binding properties similar to the processive motor, myosin-Va. Motility analysis of antibody-tethered myosin-IXb performed using the sliding actin filament assay indicates that this myosin does exhibit properties characteristic of a processive motor. Like myosin-Va, the velocity of myosin-IXb remains constant (38.2 +/- 1.2 nm/s) even at single motor/filament densities. At low motor densities, filaments can be seen passing through and pivoting about single points on the motility surface. Analysis of filament landing rates as a function of motor density also indicates that a single motor is sufficient for filament movement. However, in contrast to myosin-Va, which uses coordinated motion of its two heads to move processively along the filament, hydrodynamic and chemical cross-linking studies indicate that under the conditions tested, myosin-IXb is a single-headed motor consisting of a single heavy chain and associated light chains.  相似文献   

20.
Novel myosins     
The traditional view of myosin, drawn from studies of myosins from striated muscles, is that of an elongated two-headed molecule that assembles into filaments. However, biochemical, molecular genetic and genetic studies have uncovered a host of ubiquitous single-headed nonfilamentous myosins known collectively as myosins I. All of the myosins I possess the myosin head domain, the motor portion of muscle myosins they have tail the filament-forming tail domain of muscle myosins they have tail domains that interact variously with membranes, actin and calmodulin. These alternative molecular interactions confer novel motile properties on myosins I, such as the ability to move membranes relative to actin and to move actin relative to actin without having to assemble into filaments. The numerous actin-based movements retained by cells lacking myosin II, the two-headed filamentous form of nonmuscle myosin, may be supported by myosins I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号