首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to characterize excitation-contraction (e- c) coupling in myotubes for comparison with e-c coupling of adult skeletal muscle. The whole cell configuration of the patch clamp technique was used in conjunction with the calcium indicator dye Fluo-3 to study the calcium transients and slow calcium currents elicited by voltage clamp pulses in cultured myotubes obtained from neonatal mice. Cells were held at -80 mV and stimulated with 15-20 ms test depolarizations preceded and followed by voltage steps designed to isolate the slow calcium current. The slow calcium current had a threshold for activation of about 0 mV; the peak amplitude of the current reached a maximum at 30 to 40 mV a and then declined for still stronger depolarizations. The calcium transient had a threshold of about -10 mV, and its amplitude increased as a sigmoidal function of test potential and did not decrease again even for test depolarizations sufficiently strong (> or = 50 mV) that the amplitude of the slow calcium current became very small. Thus, the slow calcium current in myotubes appears to have a negligible role in the process of depolarization-induced release of intracellular calcium and this process in myotubes is essentially like that in adult skeletal muscle. After repolarization, however, the decay of the calcium transient in myotubes was very slow (hundreds of ms) compared to adult muscle, particularly after strong depolarizations that triggered larger calcium transients. Moreover, when cells were repolarized after strong depolarizations, the transient typically continued to increase slowly for up to several tens of ms before the onset of decay. This continued increase after repolarization was abolished by the addition of 5 mM BAPTA to the patch pipette although the rapid depolarization-induced release was not, suggesting that the slow increase might be a regenerative response triggered by the depolarization-induced release of calcium. The addition of either 0.5 mM Cd2+ + 0.1 mM La3+ or the dihydropyridine (+)-PN 200-110 (1 microM) reduced the amplitude of the calcium transient by mechanisms that appeared to be unrelated to the block of current that these agents produce. In the majority of cells, the decay of the transient was accelerated by the addition of the heavy metals or the dihydropyridine, consistent with the idea that the removal system becomes saturated for large calcium releases and becomes more efficient when the size of the release is reduced.  相似文献   

2.
In both skeletal and cardiac muscle, the dihydropyridine (DHP) receptor is a critical element in excitation-contraction (e-c) coupling. However, the mechanism for calcium release is completely different in these muscles. In cardiac muscle the DHP receptor functions as a rapidly-activated calcium channel and the influx of calcium through this channel induces calcium release from the sarcoplasmic reticulum (SR). In contrast, in skeletal muscle the DHP receptor functions as a voltage sensor and as a slowly-activating calcium channel; in this case, the voltage sensor controls SR calcium release. It has been previously demonstrated that injection of dysgenic myotubes with cDNA (pCAC6) encoding the skeletal muscle DHP receptor restores the slow calcium current and skeletal type e-c coupling that does not require entry of external calcium (Tanabe, Beam, Powell, and Numa. 1988. Nature. 336:134-139). Furthermore, injection of cDNA (pCARD1) encoding the cardiac DHP receptor produces rapidly activating calcium current and cardiac type e-c coupling that does require calcium entry (Tanabe, Mikami, Numa, and Beam. 1990. Nature. 344:451-453). In this paper, we have studied the voltage dependence of, and the relationship between, charge movement, calcium transients, and calcium current in normal skeletal muscle cells in culture. In addition, we injected pCAC6 or pCARD1 into the nuclei of dysgenic myotubes and studied the relationship between the restored events and compared them with those of the normal cells. Charge movement and calcium currents were recorded with the whole cell patch-clamp technique. Calcium transients were measured with Fluo-3 introduced through the patch pipette. The kinetics and voltage dependence of the charge movement, calcium transients, and calcium current in dysgenic myotubes expressing pCAC6 were qualitatively similar to the ones elicited in normal myotubes: the calcium transient displayed a sigmoidal dependence on voltage and was still present after the addition of 0.5 mM Cd2+ + 0.1 mM La3+. In contrast, the calcium transient in dysgenic myotubes expressing pCARD1 followed the amplitude of the calcium current and thus showed a bell shaped dependence on voltage. In addition, the transient had a slower rate of rise than in pCAC6-injected myotubes and was abolished completely by the addition of Cd2+ + La3+.  相似文献   

3.
A novel calcium current in dysgenic skeletal muscle   总被引:9,自引:3,他引:6       下载免费PDF全文
The whole-cell patch-clamp technique was used to study voltage-dependent calcium currents in primary cultures of myotubes and in freshly dissociated skeletal muscle from normal and dysgenic mice. In addition to the transient, dihydropyridine (DHP)-insensitive calcium current previously described, a maintained DHP-sensitive calcium current was found in dysgenic skeletal muscle. This current, here termed ICa-dys, is largest in acutely dissociated fetal or neonatal dysgenic muscle and also in dysgenic myotubes grown on a substrate of killed fibroblasts. In dysgenic myotubes grown on untreated plastic culture dishes, ICa-dys is usually so small that it cannot be detected. In addition, ICa-dys is apparently absent from normal skeletal muscle. From a holding potential of -80 mV. ICa-dys becomes apparent for test pulses to approximately -20 mV and peaks at approximately +20 mV. The current activates rapidly (rise time approximately 5 ms at 20 degrees C) and with 10 mM Ca as charge carrier inactivates little or not at all during a 200-ms test pulse. Thus, ICa-dys activates much faster than the slowly activating calcium current of normal skeletal muscle and does not display Ca-dependent inactivation like the cardiac L-type calcium current. Substituting Ba for Ca as the charge carrier doubles the size of ICa-dys without altering its kinetics. ICa-dys is approximately 75% blocked by 100 nM (+)-PN 200-110 and is increased about threefold by 500 nM racemic Bay K 8644. The very high sensitivity of ICa-dys to these DHP compounds distinguishes it from neuronal L-type calcium current and from the calcium currents of normal skeletal muscle. ICa-dys may represent a calcium channel that is normally not expressed in skeletal muscle, or a mutated form of the skeletal muscle slow calcium channel.  相似文献   

4.
In noncontracting, dysgenic murine muscle, excitation is uncoupled from contraction. To test whether the gene lesion is expressed as a defect in the regulation of the intracellular free Ca2+ levels, cultured normal and dysgenic muscle at various stages of development (proliferative myoblasts, early, late, and mature myotubes) were exposed to increasing increments (0.5-mM steps) of extracellular Ca2+ in ionophore A23187-Ca2+-EGTA-buffered media. Normal and dysgenic muscle at all stages (except myoblast) displayed contractures at approximately 500 microM free Ca2+ and higher. Experiments using finer increments of Ca2+ and different ionophore concentrations indicated an external Ca2+ threshold for contracture at 265 microM Ca2+ for early and late myotubes and 47-78 microM for mature normal and dysgenic myotubes. Low extracellular concentrations of calcium (14 microM and 0.76 nM) caused elongation of both normal and dysgenic myotubes. Mature cells were depolarized by exposure to increasing extracellular K+ and monitored by intracellular recording; normal and dysgenic myotubes showed similar reductions in membrane potentials. Depolarization to -35 mV elicited contractures in normal myotubes, but even depolarization to -9 mV in dysgenic cells elicited no response. Thus steady-state depolarization of dysgenic muscle does not cause contractures, which can, however, be elicited by increasing the intracellular free Ca2+. These results offer new evidence for a possible defect in the regulation of Ca2+ levels in dysgenic muscle.  相似文献   

5.
The Ca2+ currents, charge movements, and intracellular Ca2+ transients of mouse dihydropyridine receptor (DHPR) beta 1-null myotubes expressing a mouse DHPR beta 1 cDNA have been characterized. In beta 1-null myotubes maintained in culture for 10-15 days, the density of the L-type current was approximately 7-fold lower than in normal cells of the same age (Imax was 0.65 +/- 0.05 pA/pF in mutant versus 4.5 +/- 0.8 pA/pF in normal), activation of the L-type current was significantly faster (tau activation at +40 mV was 28 +/- 7 ms in mutant versus 57 +/- 8 ms in normal), charge movements were approximately 2.5-fold lower (Qmax was 2.5 +/- 0.2 nC/microF in mutant versus 6.3 +/- 0.7 nC/microF in normal), Ca2+ transients were not elicited by depolarization, and spontaneous or evoked contractions were absent. Transfection of beta 1-null cells by lipofection with beta 1 cDNA reestablished spontaneous or evoked contractions in approximately 10% of cells after 6 days and approximately 30% of cells after 13 days. In contracting beta 1-transfected myotubes there was a complete recovery of the L-type current density (Imax was 4 +/- 0.9 pA/pF), the kinetics of activation (tau activation at +40 mV was 64 +/- 5 ms), the magnitude of charge movements (Qmax was 6.7 +/- 0.4 nC/microF), and the amplitude and voltage dependence of Ca2+ transients evoked by depolarizations. Ca2+ transients of transfected cells were unaltered by the removal of external Ca2+ or by the block of the L-type Ca2+ current, demonstrating that a skeletal-type excitation-contraction coupling was restored. The recovery of the normal skeletal muscle phenotype in beta 1-transfected beta-null myotubes shows that the beta 1 subunit is essential for the functional expression of the DHPR complex.  相似文献   

6.
The skeletal and cardiac muscle dihydropyridine receptors (DHPRs) differ with respect to their rates of channel activation and in the means by which they control Ca2+ release from the sarcoplasmic reticulum (Adams, B.A., and K.G. Beam. 1990. FASEB J. 4:2809-2816). We have examined the functional properties of skeletal (SkEIIIK) and cardiac (CEIIIK) DHPRs in which a highly conserved glutamate residue in the pore region of repeat III was mutated to a positively charged lysine residue. Using expression in dysgenic myotubes, we have characterized macroscopic ionic currents, intramembrane gating currents, and intracellular Ca2+ transients attributable to these two mutant DHPRs. CEIIIK supported very small inward Ca2+ currents at a few potentials (from -20 to +20 mV) and large outward cesium currents at potentials greater than +20 mV. SkEIIIK failed to support inward Ca2+ flux at any potential. However, large, slowly activating outward cesium currents were observed at all potentials greater than + 20 mV. The difference in skeletal and cardiac Ca2+ channel activation kinetics was conserved for outward currents through CEIIIK and SkEIIIK, even at very depolarized potentials (at +100 mV; SkEIIIK: tau(act) = 30.7 +/- 1.9 ms, n = 11; CEIIIK: tau(act) = 2.9 +/- 0.5 ms, n = 7). Expression of SkEIIIK in dysgenic myotubes restored both evoked contractions and depolarization-dependent intracellular Ca(2+) transients with parameters of voltage dependence (V(0.5) = 6.5 +/- 3.2 mV and k = 9.3 +/- 0.7 mV, n = 5) similar to those for the wild-type DHPR (Garcia, J., T. Tanabe, and K.G. Beam. 1994. J. Gen. Physiol. 103:125-147). However, CEIIIK-expressing myotubes never contracted and failed to exhibit depolarization-dependent intracellular Ca2+ transients at any potential. Thus, high Ca2+ permeation is required for cardiac-type excitation-contraction coupling reconstituted in dysgenic myotubes, but not skeletal-type. The strong rectification of the EIIIK channels made it possible to obtain measurements of gating currents upon repolarization to -50 mV (Qoff) following either brief (20 ms) or long (200 ms) depolarizing pulses to various test potentials. For SkEIIIK, and not CEIIK, Qoff was significantly (P < 0.001) larger after longer depolarizations to +60 mV (121.4 +/- 2.0%, n = 6). The increase in Qoff for long depolarizations exhibited a voltage dependence similar to that of channel activation. Thus, the increase in Q(off) may reflect a voltage sensor movement required for activation of L-type Ca2+ current and suggests that most DHPRs in skeletal muscle undergo this voltage-dependent transition.  相似文献   

7.
8.
《The Journal of cell biology》1993,123(5):1161-1174
Excitation-contraction (E-C) coupling is thought to involve close interactions between the calcium release channel (ryanodine receptor; RyR) of the sarcoplasmic reticulum (SR) and the dihydropyridine receptor (DHPR) alpha 1 subunit in the T-tubule membrane. Triadin, a 95- kD protein isolated from heavy SR, binds both the RyR and DHPR and may thus participate in E-C coupling or in interactions responsible for the formation of SR/T-tubule junctions. Immunofluorescence labeling of normal mouse myotubes shows that the RyR and triadin co-aggregate with the DHPR in punctate clusters upon formation of functional junctions. Dysgenic myotubes with a deficiency in the alpha 1 subunit of the DHPR show reduced expression and clustering of RyR and triadin; however, both proteins are still capable of forming clusters and attaining mature cross-striated distributions. Thus, the molecular organization of the RyR and triadin in the terminal cisternae of SR as well as its association with the T-tubules are independent of interactions with the DHPR alpha 1 subunit. Analysis of calcium transients in dysgenic myotubes with fluorescent calcium indicators reveals spontaneous and caffeine-induced calcium release from intracellular stores similar to those of normal muscle; however, depolarization-induced calcium release is absent. Thus, characteristic calcium release properties of the RyR do not require interactions with the DHPR; neither do they require the normal organization of the RyR in the terminal SR cisternae. In hybrids of dysgenic myotubes fused with normal cells, both action potential- induced calcium transients and the normal clustered organization of the RyR are restored in regions expressing the DHPR alpha 1 subunit.  相似文献   

9.
The origin of Ibetanull, the Ca2+ current of myotubes from mice lacking the skeletal dihydropyridine receptor (DHPR) beta1a subunit, was investigated. The density of Ibetanull was similar to that of Idys, the Ca2+ current of myotubes from dysgenic mice lacking the skeletal DHPR alpha1S subunit (-0.6 +/- 0.1 and -0.7 +/- 0.1 pA/pF, respectively). However, Ibetanull activated at significantly more positive potentials. The midpoints of the GCa-V curves were 16.3 +/- 1.1 mV and 11.7 +/- 1.0 mV for Ibetanull and Idys, respectively. Ibetanull activated significantly more slowly than Idys. At +30 mV, the activation time constant for Ibetanull was 26 +/- 3 ms, and that for Idys was 7 +/- 1 ms. The unitary current of normal L-type and beta1-null Ca2+ channels estimated from the mean variance relationship at +20 mV in 10 mM external Ca2+ was 22 +/- 4 fA and 43 +/- 7 fA, respectively. Both values were significantly smaller than the single-channel current estimated for dysgenic Ca2+ channels, which was 84 +/- 9 fA under the same conditions. Ibetanull and Idys have different gating and permeation characteristics, suggesting that the bulk of the DHPR alpha1 subunits underlying these currents are different. Ibetanull is suggested to originate primarily from Ca2+ channels with a DHPR alpha1S subunit. Dysgenic Ca2+ channels may be a minor component of this current. The expression of DHPR alpha1S in beta1-null myotubes and its absence in dysgenic myotubes was confirmed by immunofluorescence labeling of cells.  相似文献   

10.
Intramembrane charge movement and Ca2+ release from sarcoplasmic reticulum was studied in foetal skeletal muscle cells from normal and mutant mice with 'muscular dysgenesis' (mdg/mdg). It was shown that: 1) unlike normal myotubes, in dysgenic myotubes membrane depolarization did not evoke calcium release from the sarcoplasmic reticulum; 2) when all ionic currents are pharmacologically suppressed, membrane depolarization produced an asymmetric intramembrane charge movement in both normal and dysgenic myotubes. The relationship between the membrane potential and the amount of charge movement in these muscles could be expressed by a two-state Boltzmann equation; 3) the maximum amount of charge movement associated with depolarization (Qon max) in normal and in dysgenic myotubes was 6.3 +/- 1.4 nC/microF (n = 6) and 1.7 +/- 0.3 nC/microF (n = 6) respectively; 4) nifedipine (1-20 microM) applied to the bath reduced Qon max by about 40% in normal muscle cells. In contrast, the drug had no significant effect on the charge movement of dysgenic myotubes; and 5) the amount of nifedipine-resistant charge movement in normal and in dysgenic myotubes was 3.5 nC/microF (n = 3) and 1.7 nC/microF 1 maximum (n = 3), respectively.  相似文献   

11.
The dihydropyridine (DHP) receptor of normal skeletal muscle is hypothesized to function as the voltage sensor for excitation-contraction (E-C) coupling, and also as the calcium channel underlying a slowly activating, DHP-sensitive current (termed ICa-s). Skeletal muscle from mice with muscular dysgenesis lacks both E-C coupling and ICa-s. However, dysgenic skeletal muscle does express a small DHP-sensitive calcium current (termed ICa-dvs) which is kinetically and pharmacologically distinct from ICa-s. We have examined the ability of ICa-dys, or the DHP receptor underlying it, to couple depolarization and contraction. Under most conditions ICa-dys is small (approximately 1 pA/pF) and dysgenic myotubes do not contract in response to sarcolemmal depolarization. However, in the combined presence of the DHP agonist Bay K 8644 (1 microM) and elevated external calcium (10 mM), ICa-dys is strongly potentiated and some dysgenic myotubes contract in response to direct electrical stimulation. These contractions are blocked by removing external calcium, by adding 0.5 mM cadmium to the bath, or by replacing Bay K 8644 with the DHP antagonist (+)-PN 200-110. Only myotubes having a density of ICa-dys greater than approximately 4 pA/pF produce detectible contractions, and the strength of contraction is positively correlated with the density of ICa-dys. Thus, unlike the contractions of normal myotubes, the contractions of dysgenic myotubes require calcium entry. These results demonstrate that the DHP receptor underlying ICa-dys is unable to function as a "voltage sensor" that directly couples membrane depolarization to calcium release from the sarcoplasmic reticulum.  相似文献   

12.
T Shimahara  R Bournaud 《Cell calcium》1991,12(10):727-733
The ontogenesis of Ca channel activities was studied in the developing myotubes of normal mice and mutant mice foetuses with 'Muscular Dysgenesis'. The ionic current through Ca channels was measured with Ba2+ as charge carrier using the whole cell clamp technique. All dissociated myotubes from foetuses (14th to 18th day of gestation) showed two distinct inward Ba currents: a low threshold, transient current (T-type) and a high threshold sustained current. In normal myotubes, T-type current density increased from the 14th day to the 16th day of gestation. After day 16, T-type current density decreased gradually until birth. Similar changes in T-type current density were observed in developing dysgenic myotubes where the current density was about 40% of that measured in normal myotubes throughout the prenatal period studied. The high threshold sustained current (L-type current) density increased gradually with age in normal myotubes while absent in dysgenic muscle. The latter, regardless of age, showed a high threshold current (Idys) which is distinct from the L-type current. Idys density did not change during the prenatal myogenesis period studied.  相似文献   

13.
The actions of autocrine ligands are required for the normal development of the preimplantation embryo in vitro. These ligands act as survival factors for the preimplantation stage embryo. One autocrine ligand, paf (1-o-alkyl-2-acetyl-sn-gylcero-3-phosphocholine), induced a dihydropyridine-sensitive calcium transient in the zygote and two-cell embryo, and these transients were required for the normal preimplantation stage survival. Paf induces an influx of external calcium through a dihydropyridine-sensitive channel. Dihydropyridine-sensitive currents are voltage-regulated, yet to date there is no evidence of membrane voltage depolarization in the two-cell embryo. To define the paf-induced calcium influx we have examined the response of the membrane potential and ion currents to paf in two-cell embryos. An initial response to paf challenge was the expression of an ion current (-15.6+/-1.6 pA) that was dependent upon extracellular calcium, was not voltage-gated but was dihydropyridine (nifedipine)-sensitive. This calcium current was followed (91+/-6 s after paf) by a net outward current (284+/-59 pA) that was composed of 4,4'-diisothiocyanatostilbene-2,2'-disulfonate-sensitive (anion channel blocker) and tetraethylammonium chloride-sensitive (K(+) channel blocker) currents. This current corresponded temporally with a marked paf-induced transient hyperpolarization of the membrane potential (-8.4+/-1.2 mV) that was dependent upon the generation of the calcium transient. The results directly demonstrate the activation of a voltage-independent calcium current in response to paf and show for the first time the expression of an afterhyperpolarization that occurs as a response to the calcium transient.  相似文献   

14.
Electrical properties of normal and dysgenic mouse skeletal muscle were studied by intracellular recording from embryonic cells developing in vitro. Passive membrane constants were determined from records of transmembrane potential responses to hyperpolarizing pulses of current using two types of analyses, assuming the tubes to be finite cylinders: the off transient and steady state analyses. The following properties of normal and dysgenic fibers were also studied. (a) membrane potentials (b) acetylcholine sensitivity (c) α-Bungarotoxin binding and (d) maximum rate of rise, overshoot and one-half fall time of the action potential. Rare electrotonic coupling between fibroblasts and myotubes was noted. An anomalous type of rectification Was observed in some fibers in which the transmembrane potential responses possessed under and overshoots. These responses may have affected the values of membrane constants as derived by the off transient analysis. In all parameters studied, including membrane constants derived by the steady state analysis, the cultured mouse cells resembled adult denervated mammalian muscle rather than innervated muscle. There were no differences between normal and dysgenic fibers with respect to any of the parameters studied. Dysgenic fibers did not contract although they displayed passive and active membrane properties like those in normal, non-dysgenic fibers.  相似文献   

15.
Calcium currents in embryonic and neonatal mammalian skeletal muscle   总被引:24,自引:5,他引:19       下载免费PDF全文
The whole-cell patch-clamp technique was used to study the properties of inward ionic currents found in primary cultures of rat and mouse skeletal myotubes and in freshly dissociated fibers of the flexor digitorum brevis muscle of rats. In each of these cell types, test depolarizations from the holding potential (-80 or -90 mV) elicited three distinct inward currents: a sodium current (INa) and two calcium currents. INa was the dominant inward current: under physiological conditions, the maximum inward INa was estimated to be at least 30-fold larger than either of the calcium currents. The two calcium currents have been termed Ifast and Islow, corresponding to their relative rates of activation. Ifast was activated by test depolarizations to around -40 mV and above, peaked in 10-20 ms, and decayed to baseline in 50-100 ms. Islow was activated by depolarizations to approximately 0 mV and above, peaked in 50-150 ms, and decayed little during a 200-ms test pulse. Ifast was inactivated by brief, moderate depolarizations; for a 1-s change in holding potential, half-inactivation occurred at -55 to -45 mV and complete inactivation occurred at -40 to -30 mV. Similar changes in holding potential had no effect on Islow. Islow was, however, inactivated by brief, strong depolarizations (e.g., 0 mV for 2 s) or maintained, moderate depolarizations (e.g., -40 mV for 60 s). Substitution of barium for calcium had little effect on the magnitude or time course of either Ifast or Islow. The same substitution shifted the activation curve for Islow approximately 10 mV in the hyperpolarizing direction without affecting the activation of Ifast. At low concentrations (50 microM), cadmium preferentially blocked Islow compared with Ifast, while at high concentrations (1 mM), it blocked both Ifast and Islow completely. The dihydropyridine calcium channel antagonist (+)-PN 200-110 (1 microM) caused a nearly complete block of Islow without affecting Ifast. At a holding potential of -80 mV, the half-maximal blocking concentration (K0.5) for the block of Islow by (+)-PN 200-110 was 182 nM. At depolarized holding potentials that inactivated Islow by 35-65%, K0.5 decreased to 5.5 nM.  相似文献   

16.
The relationship between Ca2+ current amplitudes and myoplasmic Ca2+ transients was studied in single muscle fibers. Segments of muscle fibers were voltage-clamped in a double Vaseline gap chamber. Ca2+ transients were measured as an optical signal derived from the interaction between Ca2+ and the dye antipyrylazo III. The cells were maintained at -90 mV. Ca2+ currents were detected at pulse potentials to -50 mV, reached a maximum value at 0 mV, were reduced in size for larger depolarizations, and reversed at about 40 mV. Ca2+ transients were also detected at -50 Mv and progressively increased in size with larger pulse potentials up to 10 mV. Depolarizations to voltages greater than 10 mV did not further increase the size of the transient. The magnitude and time course of transients from 10 to 70 mV were almost identical Ca2+ fluxes into the myoplasm (Ca2+ input fluxes) were calculated from the Ca2+ transients applying a removal model. The size of the input fluxes increased with depolarization up to 0 mV. Between 0 and 70 mV the peak input flux slightly increased, while the flux measured at 200 ms remained unchanged. In conclusion, Ca2+ transients and input fluxes were not reduced during pulses to large positive potentials, even though a drastic reduction of Ca2+ current occurred at these potentials. These observations make it very unlikely that a voltage-dependent Ca2+ entry is the triggering signal for contraction.  相似文献   

17.
There have been periodic reports of nonclassic (4-aminopyridine insensitive) transient outward K+ current in guinea pig ventricular myocytes, with the most recent one describing a novel voltage-gated inwardly rectifying type. In the present study, we have investigated a transient outward current that overlaps inward Ca2+ current (I(Ca,L)) in myocytes dialyzed with 10 mM K+ solution and superfused with Tyrode's solution. Although depolarizations from holding potential (Vhp) -40 to 0 mV elicited relatively small inward I(Ca,L) in these myocytes, removal of external K+ or addition of 0.2 mM Ba2+ more than doubled the amplitude of the current. The basis of the enhancement of I(Ca,L) was the suppression of a large transient outward K+ current. Similar enhancement was observed when Vhp was moved to -80 mV and test depolarizations were preceded by short prepulses to -40 mV. Investigation of the time and voltage properties of the outward K+ transient indicated that it was inwardly rectifying and unlikely to be carried by voltage-gated channels. The outward transient was attenuated in myocytes dialyzed with high-Mg2+ solution, accelerated in myocytes dialyzed with 100 microM spermine solution, and abolished with time in myocytes dialyzed with ATP-free solution. These and other findings suggest that the outward transient is a component of classic "time-independent" inwardly rectifying K+ current.  相似文献   

18.
The term excitation-coupled Ca2+ entry (ECCE) designates the entry of extracellular Ca2+ into skeletal muscle cells, which occurs in response to prolonged depolarization or pulse trains and depends on the presence of both the 1,4-dihydropyridine receptor (DHPR) in the plasma membrane and the type 1 ryanodine receptor in the sarcoplasmic reticulum (SR) membrane. The ECCE pathway is blocked by pharmacological agents that also block store-operated Ca2+ entry, is inhibited by dantrolene, is relatively insensitive to the DHP antagonist nifedipine (1 μM), and is permeable to Mn2+. Here, we have examined the effects of these agents on the L-type Ca2+ current conducted via the DHPR. We found that the nonspecific cation channel antagonists (2-APB, SKF 96356, La3+, and Gd3+) and dantrolene all inhibited the L-type Ca2+ current. In addition, complete (>97%) block of the L-type current required concentrations of nifedipine >10 μM. Like ECCE, the L-type Ca2+ channel displays permeability to Mn2+ in the absence of external Ca2+ and produces a Ca2+ current that persists during prolonged (∼10-second) depolarization. This current appears to contribute to the Ca2+ transient observed during prolonged KCl depolarization of intact myotubes because (1) the transients in normal myotubes decayed more rapidly in the absence of external Ca2+; (2) the transients in dysgenic myotubes expressing SkEIIIK (a DHPR α1S pore mutant thought to conduct only monovalent cations) had a time course like that of normal myotubes in Ca2+-free solution and were unaffected by Ca2+ removal; and (3) after block of SR Ca2+ release by 200 μM ryanodine, normal myotubes still displayed a large Ca2+ transient, whereas no transient was detectable in SkEIIIK-expressing dysgenic myotubes. Collectively, these results indicate that the skeletal muscle L-type channel is a major contributor to the Ca2+ entry attributed to ECCE.  相似文献   

19.
Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight-seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These currents could also be recorded directly in dissociated neurons in which other ionic currents were effectively suppressed. It was concluded that the persistent current was carried by sodium ions because it was blocked by TTX, decreased in amplitude when extracellular sodium concentration was reduced, and was not blocked by cadmium. The amplitude of the persistent sodium current varied with clamp potential, being detectable at potentials as negative as -70 mV and reaching a maximum at approximately -40 mV. The maximum amplitude at -40 mV in 21 cells in slices was -0.34 +/- 0.05 nA (mean +/- 1 SEM) and -0.21 +/- 0.05 nA in 10 dissociated neurons. Persistent sodium conductance increased sigmoidally with a potential between -70 and -30 mV and could be fitted with the Boltzmann equation, g = gmax/(1 + exp[(V' - V)/k)]). The average gmax was 7.8 +/- 1.1 nS in the 21 neurons in slices and 4.4 +/- 1.6 nS in the 10 dissociated cells that had lost their processes indicating that the channels responsible are probably most densely aggregated on or close to the soma. The half-maximum conductance occurred close to -50 mV, both in neurons in slices and in dissociated neurons, and the slope factor (k) was 5-9 mV. The persistent sodium current was much more resistant to inactivation by depolarization than the transient current and could be recorded at greater than 50% of its normal amplitude when the transient current was completely inactivated. Because the persistent sodium current activates at potentials close to the resting membrane potential and is very resistant to inactivation, it probably plays an important role in the repetitive firing of action potentials caused by prolonged depolarizations such as those that occur during barrages of synaptic inputs into these cells.  相似文献   

20.
Muscular dysgenesis (mdg) in mice causes the failure of excitation-contraction (E-C) coupling in skeletal muscle. Cultured dysgenic muscle fails to contract upon depolarization, lacks typical muscle ultrastructure, including normal triads, and lacks functional voltage-dependent slow calcium channels. We show that normal rodent fibroblasts and 3T3 fibroblasts "rescue" dysgenic myotubes, reestablishing contractions (i.e., E-C coupling), normal ultrastructure, and functional slow calcium channels. These results support the finding that the expression of the slow calcium channel is affected in the mdg mutation and that this protein is essential for E-C coupling. Additionally, fibroblast rescue provides a system for examining the mechanisms of heterotypic cellular influence on cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号